210 likes | 1.14k Views
Unidad 2: ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. ECUACIONES DIFERENCIALES LINEALES: TEORÍA BÁSICA. Problemas de valores iniciales (PVI). Para una ecuación diferencial lineal, un problema de valor inicial de n-ésimo orden es: Resuelva: Sujeto a:. Existencia de una solución única.
E N D
Unidad 2: ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR ECUACIONES DIFERENCIALES LINEALES: TEORÍA BÁSICA
Problemas de valores iniciales (PVI) • Para una ecuación diferencial lineal, un problema de valor inicial de n-ésimo orden es: Resuelva:Sujeto a:
Existencia de una solución única • Sean an(x), an-1(x), …, a1(x), a0(x) y g(x) continuas en un intervalo I, y sea an(x) diferente de 0 para toda x en este intervalo. Si x=x0 es cualquier punto en este intervalo, entonces una solución y(x) del problema de valor inicial existe y es única.
Problema de valores en la frontera (PVF) • Otro tipo de problema consiste en resolver una ecuación diferencial lineal de orden dos o mayor en el que la variable dependiente y o sus derivadas se especifican en diferentes puntos. Un problema como: Se llama problema de valores en la frontera.
Ecuaciones homogéneas • Una ecuación diferencial lineal de orden n de la forma:es homogénea, mientras que una ecuación:con g(x) no igual a cero, es no homogénea.
Principio de superposición, ecuaciones homogéneas • Sean y1, y2, …, yk, soluciones de la ecuación homogénea de n-ésimo orden en un intervalo I. Entonces la combinación lineal , donde ci=1,2,…,k son constantes arbitrarias, también es una solución en el intervalo.
Dependencia lineal e independencia • Un conjunto de funciones f1(x), f2(x), …, fn(x), es linealmente dependiente en un intervalo I si existen constantes c1, c2, …, cn, no todas cero, tales que: para toda x en el intervalo. Si el conjunto de funciones no es linealmente dependiente en el intervalo, se dice que es linealmente independiente.
Wronskiano • Suponga que cada una de las funciones f1(x), f2(x), …, fn(x), posee al menos n-1 derivadas. El determinante: donde las primas denotan derivadas, se llama el wronskiano de las funciones.
Criterio para soluciones linealmente independientes • Sean y1, y2, …, yn, n soluciones de la ecuación diferencial lineal homogénea de n-ésimo odenen el intervalo I. El conjunto de soluciones es linealmente independiente en I si y sólo si W(y1, y2, …, yn) es diferente de cero para toda x en el intervalo.
Conjunto fundamental de soluciones • Cualquier conjunto y1, y2, …, yn de n soluciones linealmente independientes de una ecuación diferencial lineal homogénea de n-ésimo ordenen un intervalo I es un conjunto fundamental de soluciones en el intervalo.
Existencia de un conjunto fundamental de soluciones • Existe un conjunto fundamental de soluciones para la ecuación diferencial homogénea de n-ésimo orden en un intervalo I.
Solución general, ecuaciones homogéneas • Sean y1, y2, …, yn un conjunto fundamental de soluciones de la ecuación diferencial lineal homogénea de n-ésimo orden en el intervalo I. Entonces, la solución general de la ecuación en el intervalo es:donde ci, i=1,2,…,n son constantes arbitrarias.