1 / 2

Bragg angle (2 thêta)

Diffraction intensity. 3. 8. 13. 18. 23. 28. Bragg angle (2 thêta). Supplementary Fig. 1. Wide-angle x-ray diffractogram of Crypthecodinium cohnii starch. Diffraction peaks at 2 q (Bragg angle) values of 9.9°, 11.2°, 15°, 17°, 18.1° and 23.3° characterize an A-type starch.

Download Presentation

Bragg angle (2 thêta)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diffraction intensity 3 8 13 18 23 28 Bragg angle (2 thêta) Supplementary Fig. 1. Wide-angle x-ray diffractogram of Crypthecodinium cohnii starch. Diffraction peaks at 2q (Bragg angle) values of 9.9°, 11.2°, 15°, 17°, 18.1° and 23.3° characterize an A-type starch.

  2. ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 60 70 Heterocapsa ---------- ---------- ---------- ---------- ---------- ---------- ---------- Guillardia MRRSVLSAAA VLSLSLSLLS LTPSNASTGV SSFSSSHRIP SLTRSALRLS KEGKGEDDKY GDPEAYVPQG Cyanophora ---------- ---------- ---------- ---------- ---------- ---------- ---------- Peptides .......... .......... .......... .......... .......... .......... .......... ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 80 90 100 110 120 130 140 Heterocapsa ---------- ---------- ---------- ---------- ---------- ---------- ---------- Guillardia GSKVTRNFMT CEDLRMSLRG GAGSDAIVPD QKLQIVFVSA EIAPWSVTGGLGAVCDGLPR ALAKLGHRVM Cyanophora -----MNIAP VSELQAAID- -------QAE KKLTIVFVGS ECTPWSKTGGLGDVMRDLPV NLAQRGHRVM Peptides .......... .......... .......... .......... ......KTGG LGEAFDGLPV ALAALGHR.. ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 150 160 170 180 190 200 210 Heterocapsa ---------- --WDTAYAGE VPMGNSVEPV RAFHAFESKVDRVFIDHECF LGKVWGKTGS MLYGPEWGKD Guillardia SIAPRYDQYY DAWDTEFTAE VPLGDTTTTV RFFHAFKKGVDRVFVDHPLF LEKVWGLSKQ KLYGPKWGKD Cyanophora SIQPRYDQYF DAWDTAVRSS IKVNGKLEDV GFFHITSKGVDRIFIDHPWF LAKVWGITGN KLYGAKTGVD Peptides .......... .......... .......... .........V DYVFLDHLWF .......... KLYGPEWGKD ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 220 230 240 250 260 270 280 HeterocapsaFADNQWRFTY FAKAVLKIIQ ELPLG---GY VYGGDSIVVV NDWHCGMVPV FLSMMKKSCP KDWANTKSAL Guillardia YEDNQLRFAM FCAAAMAATE KLSLG---GY PYGQDVIFVA NDWHAALVPM YLKKAQKEG- TGWFKAKSAC Cyanophora YPDNPMRFAL MCQAALEAPL RIPLPDPAGT VYGEDVIFVC NDWHSALVPI YLKANYKTR- GLYQNAKSIF Peptides FADNQ..... .......... .......... .......... .......... .......... ......KSNF ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 290 300 310 320 330 340 350 HeterocapsaLIHNAVFQGR FDRDDPEEPK TEVYGLPEAI MSTFTFNMPI KVGRTEAKVK ---------- ---RCINWMG GuillardiaLLHNMVFQGR FPYDPNAASR ---LRLPQAM VDEMVTKQPL KVGRQKKASK GLKESVEIPN PPMDVLNFLT CyanophoraLLHNIIYQGR FPLEFWPALN -----LPEAA KKDLVFESCF APPPLDGISE ----QPIISL KPMAMMNFLQ Peptides LNHDSVFQGR .......... .......... .......... .......... .......... .......... ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 360 370 380 390 400 410 420 Heterocapsa CAAKYVDRIL TVSPTYAWEI INLPEMGCEL DDIFMAKGVT GIVNGVKETV SPMNATFTKK AEMPSTFSVK Guillardia GAIKFSDAVL TVSPQYAKEV ASSSAKGAEL EKILTKTGIK GILNGVEDIV NPSNAELGLD IMYDG----- Cyanophora AGFIHADRIC TVSPQFAAEV ASGPRGGVEL DKYIRAKGIT GIMNGMDIEM WDASKDKFLV TKYTAS---- Peptides .......... ........... .......... .......... .......... .......... .......... ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 430 440 450 460 470 480 490 Heterocapsa DVDEKKAELK AQLQEMYGLP VSAETPLCVF VGRMDLQKGY DYLLAALTAV LKN-VDLQLI IIGTGRADLV Guillardia ASLEKKAQGK TAMQKSLGFA VDENIPMFVF MGRLDAQKGV DIMFEAIDSA LKGGMNAQFV TMGSGIEELE Cyanophora SVDEGKAANK AVLQAEMGLK VSPTTPLIAF VGRLDDQKGA DCMVEAMPYL VNT-LGAQVV CYGSGREDMA Peptides .......... .......... .......... .......... PVALAALTAV .......... .......... ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 500 510 520 530 540 550 560 Heterocapsa ASSKALAKKF PEKIYLAG-W CGAERYAMVA GADYNLMPSR WEPCGLAQLE SMRFGTLPVV AQTGGLVDTV Guillardia EVAAELEERY PNNFKAVLSF KGQEKYKTYA AADFAIMPSR YEPCGLVQME GMRFGTLPIV CPTGGLLDTV Cyanophora AKFKALEKQF PGMAKGKTAF VPKEEHTLMA GADYVLMPSR FEPCGLVQLH AMKYGAVPIV SCTGGLKDSV Peptides .......... .......... .......... .......... .......... ..RFGTLPIV AQLGLR.... Supplementary Fig. 2. Protein alignment of three GBSS sequences from Cyanophora paradoxa (ABW83990), Guillardia theta (CAH04621) and Heterocapsa triquetra (EST contig of : DT386072 and DT385740). In bold location and peptide sequences identified through mass spectrometry analysis from the Crypthecodinium cohnii major starch granule bound protein.

More Related