1 / 28

@mm CD w#t]y pr]hrN@y\q} ym| g#tUvk\ a#w]v[v @h`w\ phw aAkyt apv amwn\n.

@mm CD w#t]y pr]hrN@yq} ym| g#tUvk a#w]v[v @h`w phw aAkyt apv amwn<br>. r`j ]w jyv }r (v]@XS gN ]w p[h[N[) 0718005616 @h` 0343341702. Exit. gN]wy. bh[asY rdð; chùr YS% O¾ulS¾;s msßfjk fld,a¨msáh. Exit. Mathematics. Polygons Rajitha Jayaweera Sri Dharmakeerthi Piriwena

wauna
Download Presentation

@mm CD w#t]y pr]hrN@y\q} ym| g#tUvk\ a#w]v[v @h`w\ phw aAkyt apv amwn\n.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. @mm CD w#t]y pr]hrN@y\q} ym| g#tUvk\ a#w]v[v @h`w\ phw aAkyt apv amwn\n. r`j]w jyv}r (v]@X\S gN]w p[h[N[) 0718005616 @h`\ 0343341702 Exit

  2. gN]wy bh[asY rdð; chùr YS% O¾ulS¾;s msßfjk fld,a¨msáh Exit

  3. Mathematics • Polygons • Rajitha Jayaweera • Sri Dharmakeerthi Piriwena • Kollupitiya Exit Next

  4. XY} Er~mk}r~w] p]r]@vn @p`l\vw\w pAsl @k`l\l[p]t]y l[m|b]N] @kt]v]\\l vw\w n`@g`d kUwr r`j]w jyv}r(0718005616 @h`\ 0602341702) Exit Next

  5. bh[asY Polygons • p`q w;nk\ @h`\ It v’#d] gNnk]n\ smn\v]w sAv^w wl r$py bh[asYyk\ yn[@vn\ hÁ[n\vy]. • (1) w]Y@k`\N Triangle • (2) cw;rsY Quadrileteral • (3) pAc`sYy Pentagon • (4) Sd`sYy Hexagon • (5) sp\w`sYy Septagon • (6) aS\T`sYy Octagon • (7) nv`sYy Nonagon • (8) qs`sYy Decagon

  6. .Ks;h ;s%fldaK Triangle ;s%fldaK yeoskaùu ;s%fldaK mdo wkqj kï lsÍu ;s%fldaK fldaK wkqj kï lsÍu ;s%fldaKhl ,laIK r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y m%Odkfukqjg

  7. mdo ;=klska jgjqkq ixjD; ;,rEmh ;s%fldaK hkqfjka y¥kajhs m%Odkfukqjg ;s%fldaK yeoskaùu r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  8. ;s%fldaK mdo wkqj kï lsÍu • (1)iumdo ;%sfldaaKEquilatoral Triangle • (2)iu oaú mdo ;%sfldaaK Isosceles Triangle • (3)úIu mdo ;%sfldaaK Scalene Triangle m%Odkfukqjg r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  9. iumdo ;%sfldaaK Equilatoral Triangle mdo ;=k tlsfklg iudkjQ ixjD; ;,rEmh iumdo ;s%fldaK hkqfjka y¥kajhs m%Odkfukqjg rdð; chùr YS% O¾ulS¾;s msßfjk fld,a¨msáh

  10. iu oaú mdo ;%sfldaaK Isosceles Triangle • mdo folla Mlsfklg iudkjQ ixjD; ;,rEmh iu oaú mdo ;s%fldaK hkqfjka y¥kajhs m%Odkfukqjg rdð; chùr YS% O¾ulS¾;s msßfjk fld,¨msáh

  11. úIu mdo ;%sfldaaKScalene Triangle • mdo Mlsfklg wiudkjQ ixjD; ;,rEmh úIu mdo ;%sfldaaK hkqfjka y¥kajhs m%Odkfukqjg rdð; chùr YS% O¾ulS¾;s msßfjk fld,¨msáh

  12. ;s%fldaK fldaK wkqj kï lsÍu • (1)iq¿fldaKS ;%sfldaaKAcute-angled Triangle • (2)iDPq fldaKS ;%sfldaaK Right- angled Triangle • (3)uyd fldaKS ;%sfldaaKObtuse-angled Triangle • m%Odkfukqjg rdð; chùr YS% O¾ulS¾;s msßfjk fld,a¨msáh

  13. iq¿fldaKS ;%sfldaaK Acute-angled Triangle • ;%sfldaaKhl úId,u fldaKh iq¿ fldaKhl  fõkñ Mh iq¿fldaaKS ;%sfldaaKhla hkqfõka y÷kajhs m%Odkfukqjg r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  14. iDPq fldaKS ;%sfldaaKRight- angled Triangle • ;%sfldaaKhl úId,u fldaKh iDPq fldaKhl  fõkñ Mh Rcq fldaKS ;%sfldaaKhla hkqfõka y÷kajhs m%Odkfukqjg r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  15. uyd fldaKS ;%sfldaaKObtuse-angled Triangle • ;%sfldaaKhl úId,u fldaKh uydfldaaKhla fõkñ Mh uyd fldaKS ;%sfldaaKhla hkqfõka y÷kajhs m%Odkfukqjg r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  16. cw;rsY Quadrileteral • p`q hwrk]n\ smn\v]w sAv^w wl r$py cw;rs yn[@vn\ hÁ[n\vy]. • cw;rs vr~g • (1) smcw;rsYy(Square) • (2) Äj[@k`\N`sYy(Rectangle) • (3) @r`m|bsy(Rhombus) • (4) sm`n\wYr`sYy(Parallelogram) • (5) wYp}s]ym(Trapesium) r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y pYE`n @mn[v

  17. (1) smcw;rsYy (Square) • p`q hwr h` @k`\N hwr ek]@nkt sm`n sAv^w wl r$py smcw;rsY yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  18. (2) Äj[@k`\N`sYy (Rectangle) • sm|m[K p`q sm`n h` @k`\N hwr ek]@nkt sm`n v{ (ek\ @k`\Nyk\ 900 b#g]n\ v{) cw;rsYy Äj[@k`\N`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt

  19. (3) @r`m|bsy(Rhombus) • sm|m[K p`q sm`n\wr v{ h` s]yU p`q sm`n h` cw;rsYy @r`m|bsy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  20. (4) sm`n\wYr`sYy (Parallelogram) • sm|m[K p`q sm`n h` sm`n\wr v{ cw;rsYy sm`n\wYr`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  21. (5) wYp}s]ym (Trapesium) • ek\ sm|m[K p`qy[glyk\ pmnk\ sm`n\wr v{ cw;rsYy wYp}s]ym yn[@vn\ hÁ[n\vy]. r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y pYEn @mn[vt

  22. pAc`sYy (Pentagon) • p`q phk]n\ smn\v]w sAv^w wl r$py pAc`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  23. Sd`sYy (Hexagon) • p`q hyk]n\ smn\v]w sAv^w wl r$py Sd`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  24. sp\w`sYy(Septagon) • p`q hwk]n\ smn\v]w sAv^w wl r$py sp\w`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  25. aS\T`sYy(Octagon) • p`q atk]n\ smn\v]w sAv^w wl r$py aS\T`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  26. nv`sYy (Nonagon) • p`q nvyk]n\ smn\v]w sAv^w wl r$py nv`sYy yn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  27. qs`sYy(Decagon) • p`q qhyk]n\ smn\v]w sAv^w wl r$py qs`sYyyn[@vn\ hÁ[n\vy]. pYEn @mn[vt r`j]w jyv}r XY} Er~mk}r~w] p]r]@vn @k`l\l[p]t]y

  28. ;s%fldaKhl ,laIK • ;s%fldaKhlwNHka;rfldaK ;=fka Ml;=j 180xfõ • ;s%fldaKhlndysrfldaK ;=fka Ml;=j 360xfõ' m%Odkfukqjg

More Related