1 / 16

16. 如图 8-10 ,已知 AB 是⊙ O 的直径,弦 CD⊥AB ,垂足为 E , F 是 CD 的延长线上一点, AF 交⊙ O 于 G ,求证: (1)∠AGC =∠ FGD

16. 如图 8-10 ,已知 AB 是⊙ O 的直径,弦 CD⊥AB ,垂足为 E , F 是 CD 的延长线上一点, AF 交⊙ O 于 G ,求证: (1)∠AGC =∠ FGD (2)AC·DG = AG·DF. 证明: (1) 连结 AD 、 DG ∵AB 为⊙ O 的直径, CD⊥AB ∴AB 垂直平分 CD ∴AC = AD ∴∠ACD =∠ ADC ∵ 四边形 ACDG 内接于圆 ∴∠ FGD =∠ ACD ,又∵∠ AGC =∠ ADC ∴∠AGC =∠ FGD.

wayne
Download Presentation

16. 如图 8-10 ,已知 AB 是⊙ O 的直径,弦 CD⊥AB ,垂足为 E , F 是 CD 的延长线上一点, AF 交⊙ O 于 G ,求证: (1)∠AGC =∠ FGD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 16.如图8-10,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,F是CD的延长线上一点,AF交⊙O于G,求证:(1)∠AGC=∠FGD16.如图8-10,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,F是CD的延长线上一点,AF交⊙O于G,求证:(1)∠AGC=∠FGD (2)AC·DG=AG·DF

  2. 证明:(1)连结AD、DG ∵AB为⊙O的直径,CD⊥AB ∴AB垂直平分CD ∴AC=AD ∴∠ACD=∠ADC ∵四边形ACDG内接于圆 ∴∠FGD=∠ACD,又∵∠AGC=∠ADC ∴∠AGC=∠FGD

  3. 【点评】此题考查的知识点较多,有垂径定理、线段中垂线的性质、等腰三角形的性质,同弧所对圆周角相等,圆内接四边形外角等于内对角.【点评】此题考查的知识点较多,有垂径定理、线段中垂线的性质、等腰三角形的性质,同弧所对圆周角相等,圆内接四边形外角等于内对角.

  4. 17.如图8-11,已知△ABC中,AB=AC,经过A、B两点的⊙O与AC、BC分别交于D、E两点,过E作⊙O的切线EF交AC于F点,求证:17.如图8-11,已知△ABC中,AB=AC,经过A、B两点的⊙O与AC、BC分别交于D、E两点,过E作⊙O的切线EF交AC于F点,求证: (1)DE=CE(2)CE2=DF·AC

  5. 19.如图8-13,点A在⊙O外,射线AO与⊙O交于F、G两点,点H在⊙O上,FH=GH,点D是FH上一个动点(不运动到F),BD是⊙O的直径,连结AB,交⊙O于点C,连结CD,交AO于点E,且OA=5,OF=1,设AC=x,AB=y.19.如图8-13,点A在⊙O外,射线AO与⊙O交于F、G两点,点H在⊙O上,FH=GH,点D是FH上一个动点(不运动到F),BD是⊙O的直径,连结AB,交⊙O于点C,连结CD,交AO于点E,且OA=5,OF=1,设AC=x,AB=y.

  6. (1)求y关于x的函数关系式,并写出自变量x的取值范围(1)求y关于x的函数关系式,并写出自变量x的取值范围 (2)若DE=2CE,求证:AD是⊙O的切线.

  7. 20.已知:如图8-14,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,OP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F20.已知:如图8-14,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,OP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F (1)求证:BC是⊙P的切线 (2)若CD=2,CB=22,求EF的长 (3)若设K=PE∶CE,是否存在实数K,使△PBD恰好是等边三角形?若存在,求出K的值;若不存在,请说明理由.

  8. (1)证明:连结PA、PB ∵AC切⊙P于A,PA是⊙P的半径 ∴AC⊥PA即∠PAC=90° ∵四边形PACB内接于⊙O, ∴∠PBC+∠PAC=180° ∴∠PBC=90°,即PB⊥CB 又∵PB是⊙P的半径 ∴BC是⊙P的切线

More Related