190 likes | 344 Views
Heavy-Quark Thermalization and Resonances in the QGP. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees (Texas A&M), V. Greco (Texas A&M, Catania) Quark Matter 2005 Conference Budapest (Hungary), 06.08.05.
E N D
Heavy-Quark Thermalization and Resonances in the QGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees (Texas A&M), V. Greco (Texas A&M, Catania) Quark Matter 2005 Conference Budapest (Hungary), 06.08.05
1.) Introduction: Single-e± Spectra pre-QM05 RAA Djordjevic etal. ‘04 jet-quench [Djordjevic etal ’04] Armesto etal.‘05 pT [GeV/c] Coalescence assuming v2(c) = v2(q) and/or jet quenching? Challenges: • dynamical origin of strong re-interactions • consistency v2 ↔ RAA • open-bottom “contamination” • induced radiation vs. elastic scattering • …
Outline 2.) Baseline Spectra in p-p, d-Au Charm vs. Bottom 3.) Heavy-Quark Elastic Scattering in QGP pQCD vs. Resonances Brownian Motion and Thermal Relaxation 4.) Heavy-Quark and Electron Spectra at RHIC Langevin Simulation, Hadronization RAA and v2 5.) Heavy Quarkonia Charmonium pT-Spectra 6.)Conclusions
2.) Heavy-Flavor Baseline Spectra at RHIC Single-Electron Decays D-Mesons • bottom crossing at 5GeV !? (pQCD: ~4GeV[Cacciari etal ’05]) • strategy: fix charm with D-mesons, adjust bottom in e±-spectra
3.) Elastic Heavy-Quark Scattering in the QGP 3.1 Perturbative QCD [Svetitsky ’88, Mustafa etal ’98, Molnar etal ’04 Zhang etal. ’04, Teaney+Moore‘04] q c g c • dominated by t-channel gluon-ex in gc→gc: • Brownian • Motion: Fokker Planck Eq. scatt. rate diff. const. • e.g. T=400MeV, as=0.4 g = 0.1 fm-1 ↔ ttherm~10fm/cslow!
_ _ “D” q q c c • number of D-states: • 4 per u and d, 2 for s • cross section isotropic • more microscopic → [M.Mannarelli’s talk] 3.2 Open-Charm Resonances in QGP “Light”-Quark Resonances [van Hees+ RR ’04] 1.4Tc • effective model with pseudo/scalar • + axial/vector “D-mesons” [Asakawa+ Hatsuda ’03] • parameters: mD(0)=2GeV , GD, • mc=1.5GeV, mq=0
Charm vs. Bottom • tcrelax ≥ Dt(T>0.25GeV) ≈ 1fm/c • bottom does not thermalize (10%) 3.3 Heavy-Quark Thermalization Times in QGP Charm: pQCD vs. Resonances pQCD “D” • substantially smaller for • resonances
4.) Heavy-Quark and Electron Spectra at RHIC 4.1 Relativistic Langevin Simulations → stochastic implementation of heavy quarks in expanding fireball with realistic time evolution of bulkv0 , v2 [van Hees,Greco+RR ’05] Nuclear Suppression Factor Elliptic Flow • characteristic “leveling-off” • factor ~4 from resonances • pQCD elastic scatt. moderate • resonance effects substantial
Elliptic Flow Nuclear Suppression Factor Minimun-Bias Au-Au 200GeV Minimun-Bias Au-Au 200GeV • coalescence increases both RAA and v2 , resonances essential • bottom contribution reduces effects • induced gluon radiation? [van Hees, Greco +RR ’05] 4.2 Single-Electron v2 and RAA at RHIC coalescence + fragment. fqfrom p, K
5.) J/y pt-Spectra in Au-Au at RHIC Quark Coalescence at Tc [Thews+Mangano ’05] [Greco,Ko+RR ’04] • total yields different by factor 3 • large sensitivity to radial flow (bt,max=0.5-0.65)
6.) Summary • “D”-meson resonances in QGP (lQCD spectral fcts., potentials) • c(b)-quark thermalization ~4(12)fm/c (elastic scattering), • (factor ~3 faster than pQCD) • Langevin simulation for RHIC + coalescence/fragmentation: • - electrons: v2≤11% , RAA≥0.45 (MinBias), • “compromised” by bottom • - predictions similar to new PHENIX data • sQGP elastic scattering (resonances) prevalent over radiation • at low / medium pt !? • (more) uncertainties: hadronic phase (lifetime), smaller mc (?), • bottom contribution, softer fragmentation • impact on quarkonia, dileptons (intermediate mass)
Applications • → Schröd.-Eq. • → bound states (sQGP)! • scattering states? imaginary parts? • → Lippmann-Schwinger Equation [Shuryak,Zahed, Brown ’04] - q-qT-Matrix Quark- Selfenergy Selfconsistency Problem [Mannarelli+RR ’05] 3.) Resonances in QGP: Microscopic Description Lattice Q-Q Free Energy [Bielefeld Group ’04]
- q-qT-Matrices 3.2 Selfconsistent T-Matrix and Selfenergy [Mannarelli+RR ’05] T=1.2Tc T=1.5Tc T=1.75Tc • assume mq(gluon)=0.1GeV • transition from bound (1.2Tc) • to resonance states! • quark-width≈0.3GeV≈(2/3fm)-1 • (≈ mass ↔ liquid!?) • colored states, equat. of state? Quark Self- Energy T=1.5Tc
2.4.2 Langevin-Simul. at RHIC: Heavy-Quark v2 Charm-pQCD (as,mD=1.5T) Resonances vs. pQCD • hydro with Tc=165, t ≈ 9fm/c • as and Debye mass independent • characteristic “leveling-off” • factor ~4 from resonances • more sensitive to res.-coupling [Moore and Teaney ’04] [van Hees,Greco+RR ’05]
2.4.1 Langevin-Simul. at RHIC: Heavy-Quark RAA Resonances vs. pQCD Charm-pQCD (as,mD=1.5T) as , g 1 , 3.5 0.5 , 2.5 0.25,1.8 • hydro with Tc=165MeV, t ≈ 9fm/c • as and Debye mass independent • expanding fireball ≈ hydro • pQCD elastic scatt. moderate • resonance effects substantial [Moore and Teaney ’04] [van Hees,Greco+RR ’05]
Coordinate Space Diffusion • ‹x2› - ‹x›2 = Dx t ≈ (5 fm)2 • ~ fireball size at Tc c-Quark Drag and Diffusion Coefficients in QGP [van Hees+RR ’04] Thermalization Times pQCD “D” • substantially smaller for • resonances
J/yExcitation Function [Grandchamp +RR ’03] • QGP-regeneration dominant • sensitive to: • mc* , (Ncc )2 ↔ rapidity, √s, A same net suppression at SPS + RHIC! 4.4 Charmonium in A-A SPSRHIC Pb(158AGeV)-Pb • QGP-suppression prevalent • no “jump” in theory [Grandchamp etal. ’03]
3.4.3 Scrutinizing Charmonium Regeneration II: J/y Elliptic Flow Suppression only Thermal Coalescence at Tc [Greco etal ’04] [Wang+Yuan ’02] MB Au-Au • factor ~5 different! • transition inpt!?