120 likes | 208 Views
Unit 5 Review Quadrilaterals. HW answers p. 192. 12 11. x=10, 40, 40, 140, 140 19 12. AD = ½ BE 15 13. BE = ½ (AD+CF) 5 14. 14, 21 9 15. 13, 39 5 16. 6, 18 4 17. 9, 15 5 21. rectangle 6 22. rhombus 57, 123, 123 23. rhombus. HW answers p. 538
E N D
Unit 5 Review Quadrilaterals
HW answers p. 192 • 12 11. x=10, 40, 40, 140, 140 • 19 12. AD = ½ BE • 15 13. BE = ½ (AD+CF) • 5 14. 14, 21 • 9 15. 13, 39 • 5 16. 6, 18 • 4 17. 9, 15 • 5 21. rectangle • 6 22. rhombus • 57, 123, 123 23. rhombus • HW answers p. 538 • OP and NQ are bases- they must be parallel - Slope OP = slope NQ = 2/3 ; the legs must be congruent -NO=QP = √26; • and the legs cannot be parallel – slope NO = 5, slope QP = -1/5 • b. Diagonals NP = QO = √65
1. S K R Given: PQRS; PJ RK 2 Prove: SJ QK 1 P Q J Statements Reasons • PQRS; PJ RK; 1 • SP RQ 2. • P R 3. • SPJ QRK 4. • SJ QK 5.
1. S K R Given: PQRS; PJ RK 2 Prove: SJ QK 1 P Q J Statements Reasons • PQRS; PJ RK; 1. Given • SP RQ 2. Opposite sides of a are • P R 3. Opposite angles of a are • SPJ QRK 4. SAS • SJ QK 5. CPCTC
2. B C Given: ABCD; CD CE Prove: A E 2 1 A E D Statements Reasons • ABCD; CD CE 1. • 1 E 2. • BA // CD 3. • A 1 4. • A E 5
2. B C Given: ABCD; CD CE Prove: A E 2 1 A E D Statements Reasons • ABCD; CD CE 1. Given • 1 E 2. Isosceles Triangle Them • BA // CD 3. Opp sides of a are // • A 1 4. // lines form corr. Angles • A E 5. Substitution
3. T S Given: TS QR; TQ SR 3 2 Prove: Quad QRST is a 1 4 Q R Statements Reasons • TS QR; TQ SR 1. • QS QS 2. • STQ QRS 3. • 1 2; 3 4 4 • SR// TQ; ST// QR 5 • Quad QRST is a 6
3. T S Given: TS QR; TQ SR 3 2 Prove: Quad QRST is a 1 4 Q R Statements Reasons • TS QR; TQ SR 1. Given • QS QS 2. Reflexive • STQ QRS 3. SSS • 1 2; 3 4 4. CPCTC • SR// TQ; ST// QR 5. If 2 lines are cut by a transversal and form alt int s, then the lines are // • Quad QRST is a 6. If both pair of opp sides are //, then the quad is a
5. B A Given: ABZY; ZY BX; 1 2 Prove: ABZY is a rhombus 1 2 3 X Y Z Statements Reasons • ABZY; ZY BX; 1 2 1. Given • BX BZ 2. • ZY BZ 3 • ABZY is a rhombus 4.
5. B A Given: ABZY; ZY BX; 1 2 Prove: ABZY is a rhombus 1 2 3 X Y Z Statements Reasons • ABZY; ZY BX; 1 2 1. Given • BX BZ 2. Isosceles Triangle Them • ZY BZ 3. Substitution • ABZY is a rhombus 4. A parallelogram with congruent consecutive sides
6. B A Given: ABZY; AY BX Prove:1 2; 1 3 1 2 3 X Y Z Statements Reasons • ABZY; AY BX 1. Given • AY BZ 2. • BX BZ 3. • 1 2 4. • 3 2 5. • 1 3 6. Substitution
6. B A Given: ABZY; AY BX Prove:1 2; 1 3 1 2 3 X Y Z Statements Reasons • ABZY; AY BX 1. Given • AY BZ 2. Opp sides of a p-gram are • BX BZ 3. Substitution • 1 2 4. Isosceles Triangle Theorem • 3 2 5. // lines form corr. Angles • 1 3 6. Substitution