1 / 12

Unit 5 Review Quadrilaterals

Unit 5 Review Quadrilaterals. HW answers p. 192. 12 11. x=10, 40, 40, 140, 140 19 12. AD = ½ BE 15 13. BE = ½ (AD+CF) 5 14. 14, 21 9 15. 13, 39 5 16. 6, 18 4 17. 9, 15 5 21. rectangle 6 22. rhombus 57, 123, 123 23. rhombus. HW answers p. 538

weldon
Download Presentation

Unit 5 Review Quadrilaterals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unit 5 Review Quadrilaterals

  2. HW answers p. 192 • 12 11. x=10, 40, 40, 140, 140 • 19 12. AD = ½ BE • 15 13. BE = ½ (AD+CF) • 5 14. 14, 21 • 9 15. 13, 39 • 5 16. 6, 18 • 4 17. 9, 15 • 5 21. rectangle • 6 22. rhombus • 57, 123, 123 23. rhombus • HW answers p. 538 • OP and NQ are bases- they must be parallel - Slope OP = slope NQ = 2/3 ; the legs must be congruent -NO=QP = √26; • and the legs cannot be parallel – slope NO = 5, slope QP = -1/5 • b. Diagonals NP = QO = √65

  3. 1. S K R Given: PQRS; PJ  RK 2 Prove: SJ  QK 1 P Q J Statements Reasons • PQRS; PJ  RK; 1 • SP RQ 2. • P  R 3. •  SPJ   QRK 4. • SJ  QK 5.

  4. 1. S K R Given: PQRS; PJ  RK 2 Prove: SJ  QK 1 P Q J Statements Reasons • PQRS; PJ  RK; 1. Given • SP RQ 2. Opposite sides of a are  • P  R 3. Opposite angles of a are  •  SPJ   QRK 4. SAS • SJ  QK 5. CPCTC

  5. 2. B C Given: ABCD; CD  CE Prove: A  E 2 1 A E D Statements Reasons • ABCD; CD  CE 1. • 1  E 2. • BA // CD 3. • A  1 4. • A  E 5

  6. 2. B C Given: ABCD; CD  CE Prove: A  E 2 1 A E D Statements Reasons • ABCD; CD  CE 1. Given • 1  E 2. Isosceles Triangle Them • BA // CD 3. Opp sides of a are // • A  1 4. // lines form  corr. Angles • A  E 5. Substitution

  7. 3. T S Given: TS  QR; TQ  SR 3 2 Prove: Quad QRST is a 1 4 Q R Statements Reasons • TS  QR; TQ  SR 1. • QS  QS 2. • STQ   QRS 3. • 1 2; 3 4 4 • SR// TQ; ST// QR 5 • Quad QRST is a 6

  8. 3. T S Given: TS  QR; TQ  SR 3 2 Prove: Quad QRST is a 1 4 Q R Statements Reasons • TS  QR; TQ  SR 1. Given • QS  QS 2. Reflexive • STQ   QRS 3. SSS • 1 2; 3 4 4. CPCTC • SR// TQ; ST// QR 5. If 2 lines are cut by a transversal and form  alt int s, then the lines are // • Quad QRST is a 6. If both pair of opp sides are //, then the quad is a

  9. 5. B A Given: ABZY; ZY  BX; 1  2 Prove: ABZY is a rhombus 1 2 3 X Y Z Statements Reasons • ABZY; ZY  BX; 1  2 1. Given • BX  BZ 2. • ZY  BZ 3 • ABZY is a rhombus 4.

  10. 5. B A Given: ABZY; ZY  BX; 1  2 Prove: ABZY is a rhombus 1 2 3 X Y Z Statements Reasons • ABZY; ZY  BX; 1  2 1. Given • BX  BZ 2. Isosceles Triangle Them • ZY  BZ 3. Substitution • ABZY is a rhombus 4. A parallelogram with congruent consecutive sides

  11. 6. B A Given: ABZY; AY  BX Prove:1  2; 1   3 1 2 3 X Y Z Statements Reasons • ABZY; AY  BX 1. Given • AY  BZ 2. • BX  BZ 3. • 1  2 4. • 3  2 5. • 1  3 6. Substitution

  12. 6. B A Given: ABZY; AY  BX Prove:1  2; 1   3 1 2 3 X Y Z Statements Reasons • ABZY; AY  BX 1. Given • AY  BZ 2. Opp sides of a p-gram are  • BX  BZ 3. Substitution • 1  2 4. Isosceles Triangle Theorem • 3  2 5. // lines form  corr. Angles • 1  3 6. Substitution

More Related