1 / 21

Effect of Pin Parasitics on SSN

Explore the impact of pin parasitics on Signal Integrity, using various cases and components, adapted from Hall, Hall, and McCall’s research. Analyze driver, receiver, transmission lines, and ground connections interactions.

wfox
Download Presentation

Effect of Pin Parasitics on SSN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Effect of Pin Parasitics on SSN Ambrish Varma akvarma@ncsu.edu 26th September 2005

  2. 3.3 V L1 L1 L2 L2 40 Ω 50 Ω 40 Ω L6 L3 GRND Three Cases • Adapted from Hall, Hall and McCall, “High-Speed Digital System Design,” p.121 • Buffers are Arpad’s IBIS class HSPICE design (not IBIS) • Receiver is disabled driver • Transmission line references are universal ground • GRND is not ”ideal 0” – a DC source with 0 V is placed between “GRND” and 0 This slide same as Michael Mirmak’s

  3. Case1 .options accurate post probe numdgt=10 measdgt=10 ingold .tran 10p 100n * NOTE - "ideal ground node 0" is defined as an effectively * lossless low-impedance ground plane. * Similarly the voltage node 1.5 V is assumed an * effectively lossless low-impedance power plane. Vpwr pwr 0 DC=3.3 Vgnd grnd 0 DC=0 Xdriver input drv_out drv_pwr drv_gnd enable IO_buf Xreceiver rcv_pwr rcv_in rcv_pwr rcv_gnd rcv_pwr IO_buf Venable enable drv_gnd DC=0 Vinput input drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Tdrv drv_bw grnd line_out grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv rcv_bw grnd line_in grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline line_out grnd line_in grnd Z0=50 TD='0.0254*0.180n' L=0.5 Lgnd_drv drv_gnd grnd L=7.5n Lline_drv drv_out drv_bw L=9n Lpwr_drv drv_pwr pwr L=9n Lgnd_rcv rcv_gnd grnd L=7.5n Lline_rcv rcv_in rcv_bw L=9n Lpwr_rcv rcv_pwr pwr L=9n .print V(pwr,grnd) V(drv_pwr, drv_gnd) V(rcv_in,grnd) V(rcv_in, rcv_gnd) + I(Vpwr) I(Vgnd) .end

  4. Case2 .options accurate post probe numdgt=10 measdgt=10 ingold .tran 10p 100n * NOTE - "ideal ground node 0" is defined as an effectively * lossless low-impedance ground plane. * Similarly the voltage node 1.5 V is assumed an * effectively lossless low-impedance power plane. Vpwr pwr 0 DC=3.3 Vgnd grnd 0 DC=0 Xdriver input drv_out drv_pwr drv_gnd enable IO_buf Xreceiver rcv_pwr rcv_in rcv_pwr rcv_gnd rcv_pwr IO_buf Venable enable drv_gnd DC=0 Vinput input drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Tdrv drv_bw grnd line_out grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv rcv_bw grnd line_in grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline line_out grnd line_in grnd Z0=50 TD='0.0254*0.180n' L=0.5 Lgnd_drv drv_gnd grnd L=0n Lline_drv drv_out drv_bw L=16.5n Lpwr_drv drv_pwr pwr L=1.5n K1 Lline_drv Lpwr_drv 0.476731295 Lgnd_rcv rcv_gnd grnd L=0n Lline_rcv rcv_in rcv_bw L=16.5n Lpwr_rcv rcv_pwr pwr L=1.5n K2 Lline_rcv Lpwr_rcv 0.476731295 .print V(pwr,grnd) V(drv_pwr, drv_gnd) V(rcv_in,grnd) V(rcv_in, rcv_gnd) + I(Vpwr) I(Vgnd) .end

  5. Case3 .options accurate post probe numdgt=10 measdgt=10 ingold .tran 10p 100n * NOTE - "ideal ground node 0" is defined as an effectively * lossless low-impedance ground plane. * Similarly the voltage node 1.5 V is assumed an * effectively lossless low-impedance power plane. Vpwr pwr 0 DC=3.3 Vgnd grnd 0 DC=0 Xdriver input drv_out drv_pwr drv_gnd enable IO_buf Xreceiver rcv_pwr rcv_in rcv_pwr rcv_gnd rcv_pwr IO_buf Venable enable drv_gnd DC=0 Vinput input drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Tdrv drv_bw grnd line_out grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv rcv_bw grnd line_in grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline line_out grnd line_in grnd Z0=50 TD='0.0254*0.180n' L=0.5 Lgnd_drv drv_gnd grnd L=0n Lline_drv drv_out drv_bw L=9n Lpwr_drv drv_pwr pwr L=9n Lgnd_rcv rcv_gnd grnd L=15n Lline_rcv rcv_in rcv_bw L=9n Lpwr_rcv rcv_pwr pwr L=9n .print V(pwr,grnd) V(drv_pwr, drv_gnd) V(rcv_in,grnd) V(rcv_in, rcv_gnd) + I(Vpwr) I(Vgnd) .end

  6. Case1 Case2 Case3 Receiver Input Vs Receiver Ground (rcv_gnd)

  7. Case1 Case2 Case3 Receiver Input Vs System Ground (grnd)

  8. Case1 – 4 drivers * Case1 .options accurate post probe numdgt=10 measdgt=10 ingold .tran 10p 100n * NOTE - "ideal ground node 0" is defined as an effectively * lossless low-impedance ground plane. * Similarly the voltage node 1.5 V is assumed an * effectively lossless low-impedance power plane. Vpwr pwr 0 DC=3.3 Vgnd grnd 0 DC=0 Xdriver1 input1 drv_out1 drv_pwr drv_gnd enable IO_buf Xdriver2 input2 drv_out2 drv_pwr drv_gnd enable IO_buf Xdriver3 input3 drv_out3 drv_pwr drv_gnd enable IO_buf Xdriver4 input4 drv_out4 drv_pwr drv_gnd enable IO_buf Xreceiver1 pwr rcv_in1 rcv_pwr rcv_gnd pwr IO_buf Xreceiver2 pwr rcv_in2 rcv_pwr rcv_gnd pwr IO_buf Xreceiver3 pwr rcv_in3 rcv_pwr rcv_gnd pwr IO_buf Xreceiver4 pwr rcv_in4 rcv_pwr rcv_gnd pwr IO_buf Venable enable drv_gnd DC=0 Vinput1 input1 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Vinput2 input2 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Vinput3 input3 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) *Vinput4 input4 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Vinput4 input4 drv_gnd DC=0 Tdrv1 drv_bw1 grnd line_out1 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv1 rcv_bw1 grnd line_in1 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline1 line_out1 grnd line_in1 grnd Z0=50 TD='0.0254*0.180n' L=0.5 Tdrv2 drv_bw2 grnd line_out2 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv2 rcv_bw2 grnd line_in2 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline2 line_out2 grnd line_in2 grnd Z0=50 TD='0.0254*0.180n' L=0.5

  9. Cont.. Tdrv3 drv_bw3 grnd line_out3 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv3 rcv_bw3 grnd line_in3 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline3 line_out3 grnd line_in3 grnd Z0=50 TD='0.0254*0.180n' L=0.5 Tdrv4 drv_bw4 grnd line_out4 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv4 rcv_bw4 grnd line_in4 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline4 line_out4 grnd line_in4 grnd Z0=50 TD='0.0254*0.180n' L=0.5 Lgnd_drv drv_gnd grnd L=7.5n Lline_drv1 drv_bw1 drv_out1 L=9n Lline_drv2 drv_bw2 drv_out2 L=9n Lline_drv3 drv_bw3 drv_out3 L=9n Lline_drv4 drv_bw4 drv_out4 L=9n Lpwr_drv drv_pwr pwr L=9n Lgnd_rcv rcv_gnd grnd L=7.5n Lline_rcv1 rcv_bw1 rcv_in1 L=9n Lline_rcv2 rcv_bw2 rcv_in2 L=9n Lline_rcv3 rcv_bw3 rcv_in3 L=9n Lline_rcv4 rcv_bw4 rcv_in4 L=9n Lpwr_rcv rcv_pwr pwr L=9n .print V(pwr,grnd) V(drv_pwr, drv_gnd) V(rcv_in1,grnd) V(rcv_in1, rcv_gnd) + V(rcv_in4,grnd) V(rcv_in4, rcv_gnd) I(Vpwr) I(Vgnd) .end

  10. Case3 – 4 Drivers * Case1 .options accurate post probe numdgt=10 measdgt=10 ingold .tran 10p 100n * NOTE - "ideal ground node 0" is defined as an effectively * lossless low-impedance ground plane. * Similarly the voltage node 1.5 V is assumed an * effectively lossless low-impedance power plane. Vpwr pwr 0 DC=3.3 Vgnd grnd 0 DC=0 Xdriver1 input1 drv_out1 drv_pwr drv_gnd enable IO_buf Xdriver2 input2 drv_out2 drv_pwr drv_gnd enable IO_buf Xdriver3 input3 drv_out3 drv_pwr drv_gnd enable IO_buf Xdriver4 input4 drv_out4 drv_pwr drv_gnd enable IO_buf Xreceiver1 pwr rcv_in1 rcv_pwr rcv_gnd pwr IO_buf Xreceiver2 pwr rcv_in2 rcv_pwr rcv_gnd pwr IO_buf Xreceiver3 pwr rcv_in3 rcv_pwr rcv_gnd pwr IO_buf Xreceiver4 pwr rcv_in4 rcv_pwr rcv_gnd pwr IO_buf Venable enable drv_gnd DC=0 Vinput1 input1 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Vinput2 input2 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Vinput3 input3 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) *Vinput4 input4 drv_gnd pul(0 3.3 0 100p 100p 7.4n 15n) Vinput4 input4 drv_gnd DC=0 Tdrv1 drv_bw1 grnd line_out1 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv1 rcv_bw1 grnd line_in1 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline1 line_out1 grnd line_in1 grnd Z0=50 TD='0.0254*0.180n' L=0.5 Tdrv2 drv_bw2 grnd line_out2 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv2 rcv_bw2 grnd line_in2 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline2 line_out2 grnd line_in2 grnd Z0=50 TD='0.0254*0.180n' L=0.5

  11. Cont.. Tdrv3 drv_bw3 grnd line_out3 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv3 rcv_bw3 grnd line_in3 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline3 line_out3 grnd line_in3 grnd Z0=50 TD='0.0254*0.180n' L=0.5 Tdrv4 drv_bw4 grnd line_out4 grnd Z0=40 TD='0.0254*0.180n' L=0.5 Trcv4 rcv_bw4 grnd line_in4 grnd Z0=40 TD='0.0254*0.180n' L=3.3 Tline4 line_out4 grnd line_in4 grnd Z0=50 TD='0.0254*0.180n' L=0.5 Lgnd_drv drv_gnd grnd L=0n Lline_drv1 drv_bw1 drv_out1 L=9n Lline_drv2 drv_bw2 drv_out2 L=9n Lline_drv3 drv_bw3 drv_out3 L=9n Lline_drv4 drv_bw4 drv_out4 L=9n Lpwr_drv drv_pwr pwr L=9n Lgnd_rcv rcv_gnd grnd L=15n Lline_rcv1 rcv_bw1 rcv_in1 L=9n Lline_rcv2 rcv_bw2 rcv_in2 L=9n Lline_rcv3 rcv_bw3 rcv_in3 L=9n Lline_rcv4 rcv_bw4 rcv_in4 L=9n Lpwr_rcv rcv_pwr pwr L=9n .print V(pwr,grnd) V(drv_pwr, drv_gnd) V(rcv_in1,grnd) V(rcv_in1, rcv_gnd) + V(rcv_in4,grnd) V(rcv_in4, rcv_gnd) I(Vpwr) I(Vgnd) .end

  12. Case1 Case3 4 Drivers Switching Receiver Input Vs Receiver Ground (rcv_gnd)

  13. Case1 Case3 4 Drivers Switching Receiver Input Vs System Ground (grnd)

  14. Case1 Case3 Quiet Line Receiver Input Vs Receiver Ground (rcv_gnd)

  15. Case1 Case3 Quiet Line Receiver Input Vs System Ground (grnd)

  16. Case1 Case3 Quiet Line Receiver Input Vs Receiver Ground (rcv_gnd) Entire simulation Data

  17. Case1 Case3 Quiet Line Receiver Input Vs System Ground (grnd) Entire simulation Data

  18. Case1 Case3 Quiet Line (with Mutual Inductance) Receiver Input Vs Receiver Ground (rcv_gnd) Entire simulation Data

  19. Case1 Case3 Quiet Line(with mutual Ind.) Receiver Input Vs System Ground (grnd) Entire simulation Data

  20. Mutual Inductance on Case 3 with 4 Drivers …… Lgnd_drv drv_gnd grnd L=0n Lline_drv1 drv_out1 drv_bw1 L=9n Lline_drv2 drv_out2 drv_bw2 L=9n Lline_drv3 drv_out3 drv_bw3 L=9n Lline_drv4 drv_out4 drv_bw4 L=9n Lpwr_drv drv_pwr pwr L=9n K1 Lline_drv1 Lpwr_drv 0.476731295 K2 Lline_drv2 Lpwr_drv 0.476731295 K3 Lline_drv3 Lpwr_drv 0.476731295 K4 Lline_drv4 Lpwr_drv 0.476731295 Lgnd_rcv rcv_gnd grnd L=15n Lline_rcv1 rcv_bw1 rcv_in1 L=9n Lline_rcv2 rcv_bw2 rcv_in2 L=9n Lline_rcv3 rcv_bw3 rcv_in3 L=9n Lline_rcv4 rcv_bw4 rcv_in4 L=9n Lpwr_rcv rcv_pwr pwr L=9n ……

  21. Conclusions • Case 1 and Case 3 are not similar. • Quiet Line analysis shows that more the number of drivers, the more obvious the results get (even with Mutual Inductance). • Also notable is that in case 3, we keep the inductance equivalent. In actual cases, inductances (or parasitics) need not add up. Hence this is more like ‘best case scenario’.

More Related