170 likes | 191 Views
Synthesis of Bulk Metamaterials. Advisor: Prof. Ruey-Beei Wu Student : Hung-Yi Chien 錢鴻億 2010 / 05/ 06. 1. Outline. Preview Analysis of SRR SRR-Based Left-Handed Metamaterials. 2. Preview. Wire Media Negative permittivity can be obtained when ω < ω p. Analysis of Edge-Coupled SRR.
E N D
Synthesis of Bulk Metamaterials Advisor: Prof. Ruey-Beei Wu Student : Hung-Yi Chien 錢鴻億 2010 / 05/ 06 1
Outline • Preview • Analysis of SRR • SRR-Based Left-Handed Metamaterials 2
Preview • Wire Media • Negative permittivity can be obtained when ω< ωp
Analysis of Edge-Coupled SRR • EC-SRR • Initially proposed by Pendry [3] • Resonant frequency • Unwanted effect : bianisotropy [3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart “Magnetism from conductors and enhanced nonlinear phenomena.” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2075–2084, 1999 4
Analysis of Edge-Coupled SRR • The resonant frequency of an EC-SRR can be measured by placing the EC-SRR inside a rectangular waveguide and measuring the transmission coefficient. Electric and magnetic excitation Magnetic excitation Electric excitation No excitation 5
Other SRR Designs • Broadside-coupled SRR (BC-SRR) • Avoid the EC-SRR bianisotropy • Inversion symmetry • Additional advantage of much smaller electrical length • The capacitance for the BC-SRR approximately corresponds to a parallel plate capacitor. • Thin substrate of high permeability can be used. 6
Other SRR Designs • Nonbianisotropy SRR (NB-SRR) • Avoid EC-SRR bianisotropy • Keep a uniplanar design 8
Other SRR Designs • Double-split SRR (2-SRR) • Avoid EC-SRR bianisotropy • Total capacitance of the circuit • Four times smaller than the capacitance of the conventional EC-SRR. • Resonant frequency • Twice the resonant frequency of the EC-SRR • Larger electrical size at resonance 9
Other SRR Designs • Spirals • Resonant frequency • Half the resonance frequency of an EC-SRR • Smaller electrical size at resonance • Present some degree of bianisotropy 10
Artificial Magnetic Medium • Array of SRRs • The only necessary condition is that the size of the unit cell must be smaller than the wavelength. Ignore couplings between adjacent elements 11
SRR-Based Left-Handed Metamaterials • 1-D SRR-based left-handed metamaterials • Negative permittivity of the wire system • Negative permeability of the SRR system [4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity.” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000. 12
SRR-Based Left-Handed Metamaterials • 1-D SRR-based left-handed metamaterials • A single row of SRRs is placed inside a cutoff square waveguide • Negative permittivity: the cutoff waveguide • Negative permeability: EC-SRR 13 [46] R. Marque´s, J. Martel, F. Mesa, and F. Medina “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides.” Phys. Rev. Lett., vol. 89, paper 183901, 2002
SRR-Based Left-Handed Metamaterials • 1-D SRR-based left-handed metamaterials • Two hollow waveguides (one above and the other below cutoff) are loaded by equispaced BC-SRRs • Passband : narrow waveguide • Stopband : wider waveguide [51] J. D. Baena, R. Marque´s, J. Martel, and F. Medina “Experimental results on metamaterial simulation using SRR-loaded waveguides.” Proc. IEEE-AP/S Int. Symp. on Antennas and Propagation, pp. 106–109, 2003 14
SRR-Based Left-Handed Metamaterials • 2-D SRR-based left-handed metamaterials • An orthogonal arrangement of dielectric circuit boards with EC-SRRs and metallic strips printed on each side • Negative permittivity : metallic strips • Negative permeability : EC-SRRs [52] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial.” Appl. Phys. Lett., vol. 78, pp. 489–491, 2001 15
SRR-Based Left-Handed Metamaterials • Superposition • Systems providing negative permittivity and negative permeability should be placed in the way that the interaction between its elements through its quasistatic fields is minimized. 16
Reference • J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart “Magnetism from conductors and enhanced nonlinear phenomena.” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2075–2084, 1999 • D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity.” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000. • R. Marque´s, J. Martel, F. Mesa, and F. Medina “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides.” Phys. Rev. Lett., vol. 89, paper 183901, 2002 • J. D. Baena, R. Marque´s, J. Martel, and F. Medina “Experimental results on metamaterial simulation using SRR-loaded waveguides.” Proc. IEEE-AP/S Int. Symp. on Antennas and Propagation, pp. 106–109, 2003 • R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial.” Appl. Phys. Lett., vol. 78, pp. 489–491, 2001 • Metamaterials with Negative Parameters, Ch2 17