1 / 29

g(r) - pair correlation function

Supramolekul á rna štruktúra v roztokoch a zmesiach kvapalín _______________________ Seminár ÚEF 25.septembra 2007.

willem
Download Presentation

g(r) - pair correlation function

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Supramolekulárna štruktúra v roztokoch a zmesiach kvapalín_______________________Seminár ÚEF 25.septembra 2007

  2. 1.) M. Sedlák: Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization. J. Phys. Chem. B, 110 (9), 4329 -4338, 2006.2.) M.Sedlák: Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: II. Kinetics of the Formation and Long-Time Stability. J. Phys. Chem. B, 110 (9), 4339 -4345, 2006.3.) M. Sedlák: Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: III Correlation with molecular properties and interactions. J. Phys. Chem. B, 110 (9), 13976-13984, 2006.M. Sedlák: Large-scale supramolecular structure in solutions of polar and ionic molecules and macromolecules, ESF Exploratory workshop: self-assembly of guanosine, Bled, Slovenia, 13.9. -15.9.2006M. Sedlák: Large-scale supramolecular structures,First Annual (Inaugural) Conference onThe Physics, Chemistry and Biology of Water 2006, Brattleboro, Vermont, USA, 26.10. -29.10., 2006

  3. r r g(r) - pair correlation function

  4. Static and Dynamic Laser Light Scattering SLS: Space resolution ~ 1/q q: scattering vector q = (4n/0)sin(/2) r ~ 1/q ~ 20 - 2 000 nm DLS resolution: Space: 1 - 5 000 nm Time: 100 ns - seconds

  5. Static Light Scattering Measured quantities: • angular dependence I()or I(q), q = (4n/0)sin(/2) yields: structural information d ~ 1/q ~ 20 - 2000 nm • absolute values I(0) yields: particle mass particle interactions

  6. Dynamic Light Scattering Measured quantity • frequency dependence I(f) f/f0 = 10 - 107Hz / 1015Hz = 10-8- 10-14

  7. Time autocorrelation of scattering signal  ~ 100ns - seconds Various types of dynamics: Spatial resolution via dynamics: • translational diffusion Diffusion ~ 1/R • rotational diffusion 1 nm - 5000 nm • non-diffusive relaxations

  8. I/IB = Af + As Df = coupled diffusion of cations and anions (Nernst-Hartley) M. Sedlák, in ”Physical Chemistry of Polyelectrolytes” (T. Rageva ed.), Marcel Dekker, New York, 2001, p.1-58 M. Sedlák, Langmuir 15 (1999), 4045-4051. 0.4 M MgSO4 (aqueous)

  9. Rationale • Large inhomogenities in refractive index must exist (large means ~ q-1 >> molecular dimensions or intermolecular distances) • These are responsible for the slow dynamics • Due to inhomogenities in the local concentration of solute and/or due to inhomogenities in the local arrangement of asymmetric solute molecules

  10. Light scattering characterization of large-scale inhomogeneous structure Random two-phase system (Debye-Bueche model)? Spatial correl. function <n(0)n(r)> ~ e-r/a Discrete structures • self-similar (fractal) ? • asymmetric (depolarized scattering) ? • spherical or close-to-spherical

  11. Spherical or close-to-spherical discrete objects Size distribution by ORT Optimized regularization technique (O. Glatter et al.)

  12. 20 000 g

  13. Number of solute particles per domain R = 30 nm R = 300 nm Lower estimate ~ 104~ 107 Upper estimate ~ 106 ~ 109

  14. 0.5 0.4 0.3 0.2 0.1 0.0 5 4 3 2 1 0 acetic acid H2O + acid I / IB (90°) I / IB (90°) H2O 0 2 4 6 8 10 12 t, min 0 10 20 30 40 t, min Kinetics of the supramolecular domain formation H2O + acetic acid c = 6 mass % of acid

  15. 8 6 4 2 0 8 1 0.1 0.02 300 225 150 75 AS (37.5°) Rh, nm AS 0 0 100 200 300 t, days 0.0 0.2 0.4 0.6 0.8 sin 2(/2) Kinetics of the supramolecular domain formation H2O + DMSO c = 10.5 mass % of DMSO

  16. 200 100 10 1 0.1 200 100 10 1 0.1 As / Af As / Af 0.0 0.2 0.4 0.6 0.8 sin 2(/2) 0.0 0.2 0.4 0.6 0.8 sin 2(/2) Monovalent (1:1) electrolytesMultivalent electrolytes c = 0.4M Effect not due to Coulomb attraction • no correlation with ion valency • no correlation with solvent dielectric permittivity KCl in water NaI in water KI in water KI in glycerine KI in ethyleneglycol KI in dimethylformamide KI in dimethylsulfoxide Aqueous solutions: AlCl36H2O Al(NO3)39H2O MgSO47H2O CdSO48/3H2O and Al2(SO4)318H2O As= 0 KI in methanol As= 0 KI in acetonitrile As= 0 MgSO47H2O in methanol

  17. Comparison of osmotic coefficients  of monovalent and multivalent salts in selected solvents. . Simple ion pairing due to Coulomb attraction • correlation with ion valency • correlation with solvent dielectric permittivity

  18. Aqueous solutions of citric acidionized to different degrees:no ionization (), 4% (), 38% (), 60% (), and 90% ionization () Effect not due to Coulomb attraction • no correlation with ion valency citric acid

  19. Scattering from supramolecular domains in aqueous solutions of selected non-ionic solid compounds urea pyrogallol hydroquinone D-glucose saccharose c = 4.5 mass %

  20. Scattering from supramolecular domains in aqueous liquid mixtures dimethylsufoxide dioxane acetonitrile acetic acid methanol ethanol ethyleneglycol glycerol

  21. 10 5 1 0.5 0.4 0.3 0.2 0.1 0.0 methanol-benzene methanol-benzene g(1)(t) I / IB t A(t), a.u. 0.0 0.2 0.4 0.6 0.8 1.0 sin 2(/2) -4 -3 -2 -1 0 1 2 log (t, ms) Mixtures of nonpolar or weakly polar compounds

  22. Mixtures of strongly polar compounds

  23. Protic mixtures: at least one component protic O-H, N-H, S-H, Halogen-H

  24. urea

  25. water methanol As/Af (37.5°)As/Af  0.4M KI 6.5 0.92 0 0.79 0.12M KBr 10.2 0.93 0 0.81 0.4M MgSO47H2O 118 0.57 0 0.20 10 mass % dioxane 155 ---- 0 ---- 20 mass % acetonitrile > 30 ---- 0 ---- 1 0.1 0.1 0.01 10 1 0.3 10 1 0.3 1 0.1 0.03 I / IB I / IB I / IB I / IB I / IB 0.0 0.2 0.4 0.6 0.8 sin 2(/2)

  26. Scattering from supramolecular domains in dioxane mixtures water ethyleneglycol glycerol 10 1 0.1 0.01 AS 0.0 0.2 0.4 0.6 0.8 sin 2(/2) As = 0 methanol As = 0 ethanol

  27. glucose dextran

  28. Dakujem Vám za pozornost

More Related