190 likes | 205 Views
Explore the basics of logic gates including AND, OR, NOT, Buffer, NAND, NOR, XOR, XNOR gates and their operations in digital circuits. Learn Boolean expressions, simplification techniques, and Karnaugh maps for efficient logic design.
E N D
Al-MamoonUniversity College ComputerScienceDepartment SecondYear Architecture and LogicGates LogicGates By Dr.MazinAlzewary 2017-2018
BasicLogicGates • AND Gate • Symbol • Truth Table (T.T) thetabledescribe relation between inputs andoutputs (Gate function) • Math Expression Y=A.B • OR Gate • Symbol • Truth Table (T.T) • Math Expression Y=A+B • NOT Gate • Symbol • Truth Table (T.T) • Math Expression Y=A • Buffer Gate • Symbol • Truth Table (T.T)
Math expression Y=A • NANDGate • Symbol • Truth Table (T.T) • Math Expression Y=A.B • NOR Gate • Symbol • Truth Table (T.T) • Math Expression Y=A+B • XOR Gate • Symbol • Truth Table (T.T) • Math Expression Y=A+B • =A.B +A.B • XNOR Gate • Symbol
Truth Table (T.T) • Math expression Y=A+B • Universal NAND Universal NOR
BooleanExpression • Consist of logical (0 or1)variableA, B, C, etc and logical operations (throughgates) suchas * (AND), • + (OR), complement(NOT) • Minterms areAND terms with every variable present in eithertrueorcomplemented form such as A.B, B.C.D • Maxterms areOR terms with every variable intrueor complemented formsuch as (A+B), (B+C) • There aretwo typeof logical expression • Sum of Product (SOP) Y=A.B • Z=A.C +D X=ABC +E • Product of Sum (POS) M=(A+B)(B+C) • Q 1 Convert thelogical expression to logical gatesor to digital circuit • 1. Y=A.B+C 2. Y=A.B’ + B.C Q2)Convert thelogicalgates to Boolean expression 1. 2.
LogicalAlgebra(Rules) • Q1 Provethat A +AB =A • A+AB=A(1+B) • =A.1 =A • Q2 Provethat A +AB=A +B • =(A+AB)+AB • =(AA+AB)+AB • =AA+AB+AA+AB • =(A+A)(A+B) • =A+B • Q3 Provethat (A + B) (A +C)=A+AB • =AA+AC+AB+BC • =A+AC+AB+BC • =A(1+C)+AB+BC • =A*1+AB+BC • =A(1+B)+BC • =A*1+BC • =A+BC • BooleanExpression Simplification • SimplificationUsingBoolean Algebra (Rules) • Order of execution is • Parentheses • NOT
AND • OR • Q1) Simplifythe expression usinglogical rules Y=ABC • Q2)Simplifythe expression usinglogical rules Y=AB(C+D) Q3)Simplifythe expression usinglogical rules Y=(A+B+C)D Q4)Simplifythe expression usinglogical rules Y=[AB(C+BD)+AB]C=(ABC+ABBD+AB)C =(ABC+0+AB)C =(ABC+AB)C =ABCC+ABC =ABC+ABC =BC(A+A) =BC.1 =BC Q5)Simplifythe expression usinglogical rules and draw circuit AB+AC+ABC
2. SimplificationUsing Karnaugh Map (K-MAP) Karnaugh Map • Takeeach mintermfromexpression and find thesuitable cell in theMAP (AB, AB, etcfor two variable ) and write1 forthat location • Write 0to the rest location • Build block forthe onessuchthat • Contiguouscells • Theblock is 2,4,8,etc location • Choosebigger block first • Thecell (1)could be contain in morethan oneblock • Build Boolean term for each block • Thesimplified expression is the sum of all sub expression • Q1)Simplifyusingkarnaugh map • 1. Y= 2. Y=
Q2) Reducethe expressionusingK-MAP X=ABC+ABC+ABC+ABC+ABC Using SOP POS a. b. Q3) Reducethe expressionusingK-MAP Y=ABCD+ABCD+ ABCD+ABCD+ ABCD+ABCD+ABCD using1. SOP 2 POS 1.
2. LogicFunction Representation 1. LogicFunction as Boolean Expression Form Y=AB+AB+AB Y=ABC +ABC +ABC +ABC +ABC And these could be solved usingK-Map But if wehaveY=AB+ABC+ABC Theterm ABnot includeall threevariable and how could weinsert it in the map IfwemultiplytheABby(C+C) to get AB=AB*1=AB*(C+C)=ABC +ABC Then the newexpression could be Y=ABC +ABC +ABC +ABD And could be solved usingK-Map 9
2. Logic Function asTruth TableForm X(A,B,C)= (1,4,5,6,7) Y=ABC +ABC +ABC +ABC +ABC Thestandard mapforanyfunction could be mansion bellow
Q)Simplifythe followingusingK-Map X(A,B,V,D)= (1,4,8,9,11,12,13,15) Don’tCare Thereis situation that the value ofcell not affect the expression( thesameif it is 0 or 1)this situation is called don’t care(X) andcould be used as 0 or 1 in buildingtheblock (thefunction do not care foroutput 0 or1) Q)Simplifythe Booleanfunction given in the truth table
Questions Q1)Simplifythe followingBooleanexpression usingKarnaugh map Y=AB+AB+AB Y=ABC +ABC +ABC +ABC +ABC +ABC Y=ABC +ABC +ABC +ABC +ABC +ABC Y=ABCD +ABCD +ABCD +ABCD + ABCD+ABCD Y=AB+ABC +ABC +ABC +ABC +ABC Y =A+ABC + ABC +ABC +ABC +ABC +ABC Y=ABC +BC +C+A+ABC +ABC Q2)Convert the followingSOP expression to an equivalent POS expression. Q3)Determinethe values of A, B, C, and Dthat makethe sum term equal to zero. Q4) Whichof thefollowingexpressionsisinthesum-of-products (SOP) form? (A+B)(C +D) (A)B(CD) AB(CD) AB+CD Q5)DerivetheBoolean expressionfor thelogiccircuitshownbelow:
Q6)From thetruthtablebelow,determinethestandardSOPexpression. Q7) OneofDe Morgan'stheoremsstatesthat differencebetween: .Simplystated, thismeansthatlogicallythereisno aNOR and anAND gatewithinvertedinputs aNAND andanOR gatewithinvertedinputs anAND and aNOR gatewithinvertedinputs aNOR and aNAND gatewithinvertedinputs Q8) ApplyingDeMorgan'stheorem totheexpression A. , weget_. B. C. D. Q9) Whichoutputexpression might indicateaproduct-of-sumscircuitconstruction? A. B. C. D. Q10) For theSOPexpression A. 1 , howmany1sareinthetruthtable'soutputcolumn?
Q11) Howmanygateswouldbe requiredtoimplement thefollowingBooleanexpressionbeforesimplification?XY + X(X+Z)+ Y(X+Z) Q12) Determinethevaluesof A,B,C,and D thatmaketheproduct term A. A=0,B=1,C =0,D =1 B. A=0,B=0,C =0,D =1 C. A=1,B=1,C =1,D =1 D. A=0,B=0,C =1,D =0 Q13) AC +ABC =AC A. True equal to1. B. False Q14)Applyingthedistributivelaw totheexpression A. , weget. B. C. D.