410 likes | 593 Views
Sisyphus cooling and pumping of linear oscillator by superconducting qubit. M. Grajcar Comenius University, Slovakia. A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer Institute for Physical High Technology, Germany. A. Fedorov, A. Shnirman, Gerd Schön,
E N D
Sisyphus cooling and pumping of linear oscillator by superconducting qubit M. Grajcar Comenius University, Slovakia A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer Institute for Physical High Technology, Germany A. Fedorov, A. Shnirman, Gerd Schön, Institut für Theoretische Festkörperphysik Universität Karlsruhe, Germany S.N. Shevchenko, A.N. Omelyanchouk, B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine S. Ashhab, J.R. Johansson, A. Zagoskin and Franco Nori, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Japan
Outline Superconducting flux qubit Adiabatic measurement of the qubit in the ground state Spectroscopic measurement Sisyphus cooling and pumping Lower limit on the achievable temperature
Single-junction interferometer (RF-SQUID) 0 1 Or in normalized Units: Classical two level System!
0 p 2p Classical picture 1 0 f Particle with mass ~ CJ in potential:
0 p 2p d Quantum Picture f If CJ is small enough tunneling between both wells becomes possible and therefore the degeneracy is lifted. So we need Small Josephson Junctions with EJ/EC~10-100
nF 0 + + + Persistent current (flux) qubit – analogue of ammonia molecule B Superconducting persistent current qubit – oscillation of a magnetic dipole moment (magnetic flux), Ammonia molecule – oscillation of an electric dipole moment (f=24 GHz) N H H H
Size problem and solution For quantum behavior EJ/EC~10-100 Typical parameters for aluminum technology :
Solution of the size problem ‚Size‘ problem solved in 70´s T. Yamashita et al., J. Appl. Phys. 50, 3547 (1979) This idea was dusted off by J.E. Mooij et al., Science285, 1036, 1999
-0 0 Tunneling amplitude E0 ЕС=5 GHz, g=EJ/EC=66, ЕJ=330GHz.
1 um IC, f1 IC, f2 Fx aIC (0.5<a<1) Pseudospin Hamiltonian
LT VT M L Φi CT Ib Flux qubit coupled to oscillator
Expanding into Taylor seriesup to the second order term Lagrangian of the qubit-resonator system - 2
L T C T I b The sufficient condiction for Quantum Nondemolition Measurements Quantum approach At the degeneracy point L Φi No perturbation of the measured observable [V.B. Braginsky and F.Ya. Khalili, Quantum Measurement, (Cambridge University Press, Cambridge, 1992]. is satisfied.
Impedance Measurement,classical resonator LT M L CT Φ VT Ib Ya. S. Greenberg et al., PRB 66, 214525 (2002) DC-Squid Josephson Inductance: A. Lupascu et al., PRL 93, 177006 (2004).
Response of resonator EJ/Ec<102 =0.9 EJ/Ec103 EJ/Ec<102 =0.8
Resonant frequency of the resonator Y. Greenberg et al., PRB 66 214525 (2002). Fitting parameters
Sisyphus work Greek mythology As a punishment from the gods for his trickery, Sisyphus was compelled to roll a huge rock up a steep hill, but before he reached the top of the hill, the rock always escaped him and he had to begin again. Titian (1549) artist vision of Sisyphus work Physical realization: For atoms D. J. Wineland, J. Dalibard and C. Cohen-Tannouji, J. Opt. Soc. B9, 3242 (1992). For qubit Grajcar et al., arXiv:0708.0665 Nature Physics 4, 612-616 (2008).
Adiabatic vs. spectroscopic measurement Solid line is theoretical curve for Parameters determined from adiabatic measurement
Strong microwave driving at fmw=4.5 GHz Strong driving Transition from weak to strong driving Weak driving dc (0) A. Izmalkov et al., PRL 101, 017003 (2008) W.D. Oliver et al.,SCIENCE 310, 1653(2005) M. Sillanpää et al., PRL 96, 187002 (2006)
Landau-Zener interferometry A.V. Shytov, D.A. Ivanov, and M.V. Feigel’man, Eur. Phys. J. B 36, 263 (2003). S.N. Shevchenko et al. Phys. Rev. B 78, 174527 (2008)
More rigorous treatment of Sisyphus cooling/pumping A. Fedorov,A. Shnirman, Gerd Schön fmw=14 GHz M. Grajcar et al., Nature Physics 4, 612-616 (2008).
Sisyphus and sideband cooling limit M. Grajcar, A. Ashhab, J.R. Johansson, F. Nori Phys. Rev. B 78, 035406 (2008)
Conclusions • Superconducting flux qubits are well described by two-level (pseudospin) Hamiltonian • Experimental data obtained from adiabatic and spectroscopic measurement are consistent and fully agree with the quantum-mechanical predictions to the experimental accuracy. • The qubit can be used as an artificial atom for Sisyphus cooling of a low frequency oscillator (electrical, nanomechanical, etc.)
Ground state energy modulation m= - + + - m=1/2 m=-1/2
Spectroscopy of the system of two coupled flux qubits. A. Izmalkov et al., PRL 101, 017003 (2008) Without microwave driving fmw= 14 GHz fmw= 18 GHz fmw= 21 GHz
Nanomechanical oscillators Nanobridge from IPHT Jena Neik et al., Nature 443, 193 - 196 (2006) I. Martin, A. Shnirman, Lin Tian, P. Zoller Ground state cooling of mechanical resonators Phys. Rev. B 69, 125339 (2004) Prepared for measurement at temprature below1 mK in ulra low temp. labin Košice
Quantum metamaterials Design of high efficiency microwave photon detector for GHz range G. Romero et al., Microwave Photon Detector in Circuit QED, arXiv:0811.3909v1
Four qubit sample Layout Micrograph A3 Iq1 Iq3 q1 q3 A2 q2 q4 Ib4 Iq2 A1
FM AFM Anti-Ferromagnetic and Ferromagnetic Coupling Iq2=-10 µA Iq3=0 Iq4=-250 µA
Theoretical fits. Phys. Rev. Lett. 96, 047006 (2006) Experiment Theory