310 likes | 400 Views
Introduction to Nanomechanics (Spring 2012). Martino Poggio. Cooling Mechanical Resonators. Achieve ultimate force resolution Approach the quantum regime Measure mechanical superpositions and coherences. Superposition & Coherence?. Strategies for Cooling Resonators.
E N D
Introduction to Nanomechanics(Spring 2012) Martino Poggio
Cooling Mechanical Resonators • Achieve ultimate force resolution • Approach the quantum regime • Measure mechanical superpositions and coherences Introduction to Nanomechanics
Superposition & Coherence? Introduction to Nanomechanics
Strategies for Cooling Resonators • “Brute force”: High resonance frequencies & low reservoir temperatures • Damping mechanical motion • Cavity cooling Introduction to Nanomechanics
xrms (xzp) T (K) Introduction to Nanomechanics
“Brute Force” Introduction to Nanomechanics
Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) • m = 10-15 kg • = 2 x 10 MHz • xth= 2 x 10-12 m • xzp= 3 x 10-14 m Introduction to Nanomechanics
Real Numbers (T = 1 K) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = 10-21 kg = 2 x 500 MHz xth= 4 x 10-11 m xzp= 4 x 10-12 m Introduction to Nanomechanics
Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = 10-21 kg = 2 x 500 MHz xth= 4 x 10-11 m xzp= 4 x 10-12 m • m = 10-15 kg • = 2 x 10 MHz • xth= 2 x 10-12 m • xzp= 3 x 10-14 m Introduction to Nanomechanics
Real Numbers (T = 10 mK) Top-down doubly clamped Si beams (Schwab) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = 10-21 kg = 2 x 500 MHz xth= 4 x 10-12 m xzp= 4 x 10-12 m • m = 10-15 kg • = 2 x 10 MHz • xth= 2 x 10-13 m • xzp= 3 x 10-14 m Introduction to Nanomechanics
Technical Challenges • Resonator Fabrication (high frequency, low dissipation, low mass) • Displacement sensing (low measurement imprecision, i.e. low noise floor) • Refrigeration (mK temperatures) Introduction to Nanomechanics
Expectation vs. Reality Nth T (K) Introduction to Nanomechanics
Strategies for Cooling Resonators • “Brute force”: High resonance frequencies & low reservoir temperatures • Damping mechanical motion • Cavity cooling Introduction to Nanomechanics
Usual Cantilever Motion Detection fiber interferometer cantilever spectrum analyzer piezo
damping Simple Electronic Damping fiber interferometer cantilever spectrum analyzer piezo
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 0 Tmode = 3.8 K Q0 = 45,660 100 10 1 0.1 Sprectral density (Å2/Hz) 0.01 1E-3 Interferometer shot noise level 1E-4 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 6.8 100 10 Tmode = 530 mK Qeff = 5,834 1 0.1 Sprectral density (Å2/Hz) 0.01 1E-3 Interferometer shot noise level 1E-4 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 67 100 10 1 0.1 Tmode = 71 mK Qeff = 674 Sprectral density (Å2/Hz) 0.01 1E-3 Interferometer shot noise level 1E-4 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 263 100 10 1 0.1 Sprectral density (Å2/Hz) 0.01 Tmode = 13 mK Qeff = 173 1E-3 Interferometer shot noise level 1E-4 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 525 100 10 1 0.1 Sprectral density (Å2/Hz) 0.01 Tmode = 5.3 mK Qeff = 87 1E-3 Interferometer shot noise level 1E-4 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 1267 100 10 1 0.1 Sprectral density (Å2/Hz) 0.01 Tmode = 0.62 mK Q = 36 1E-3 Interferometer shot noise level 1E-4 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 3043 100 10 1 0.1 Sprectral density (Å2/Hz) 0.01 1E-3 Interferometer shot noise level 1E-4 Tmode = -0.25 mK Qeff = 15 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever - T = 4.2K 1000 g = 4565 100 Mechanical feedback can cancel photon shot noise! Negative mode temperature?! 10 1 0.1 Sprectral density (Å2/Hz) 0.01 1E-3 Interferometer shot noise level 1E-4 Tmode = -3.0 mK Qeff = 10 1E-5 3500 3750 4000 4250 Frequency (Hz)
damping measurement noise Experimental setup fiber interferometer cantilever spectrum analyzer piezo
Cantilever Noise Temperature with Feedback Effective Q with feedback: Measured spectral density: Actual cantilever spectral density: Cantilever mode temperature:
Cantilever Noise Temperature with Feedback Effective Q with feedback: Measured spectral density: Actual cantilever spectral density: Cantilever mode temperature: For optimum feedback gain
Cooling (damping) of a cantilever - T = 4.2K → 4.6mK 1000 T = 4.2 K Tmode = 5.3 K 100 10 Tmode = 530 mK 1 0.1 Tmode = 73 mK Spectral density (Å2/Hz) 0.01 Tmode = 16 mK Tmode = 8.3 mK 1E-3 Tmode = 4.6 mK 1E-4 Tmode = 5.3 mK Tmode = 9.3 mK 1E-5 3500 3750 4000 4250 Frequency (Hz)
Cooling (damping) of a cantilever – model and experiment 10000 T = 4.2 K Q0 = 45,660 1000 Tmode, min = 4.6 mK Qeff = 36 100 Tmode (mK) 10 Theoretical Limit 1 0.1 0 1000 3000 4000 5000 6000 2000 g
Cooling (damping) of a cantilever – model and experiment 102 101 100 Tmode (K) T = 295 K 10-1 Tmode = 2.9 mK 10-2 T = 4.2 K T = 2.2 K Theoretical Limit 10-3 0 2000 4000 6000 g