1 / 17

Bottleneck Resource Allocation in Manufacturing

Bottleneck Resource Allocation in Manufacturing. Mgmt. Sci. Vol. 42, No. 11, 1996 Anantaram Balakrishnan, Richard L. Francis & Stephen J. Grotzinger Smeal College of Business Administration, The Pennsylvania Univ. Dept. of Industrial and Systems Engineering, Univ. of Florida. 자동화실험실 장양자.

wray
Download Presentation

Bottleneck Resource Allocation in Manufacturing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bottleneck Resource Allocation in Manufacturing Mgmt. Sci. Vol. 42, No. 11, 1996 Anantaram Balakrishnan, Richard L. Francis & Stephen J. Grotzinger Smeal College of Business Administration, The Pennsylvania Univ. Dept. of Industrial and Systems Engineering, Univ. of Florida. 자동화실험실 장양자

  2. Contents • Introduction • Bisection Method for Bottleneck Resource Allocation • Assembly-Release Planning Problem • Model Extensions • Conclusion 97년 2학기 정기 세미나

  3. Introduction • Resource Allocation Problem • Choosing integer valued levels for various activities to maximize the minimum return or productivity • 응용 분야: line balancing, raw material allocation, maintenance planning, storage allocation 97년 2학기 정기 세미나

  4. Monotonic Resource Allocation Problem • X; n-vector of integer activity levels xj • Si; total availability of resource i • gi(X); amount of resource i consumed by the activity levels in X, resource usage function (nondecreasing) • fj(xj); productivity of activity j (permit nonmonotonic) • F(X); system’s productivity =min{fj(xj); j=1 to n} • B=(Bj); lower bound of activity • C=(Cj); upper bound of activity 97년 2학기 정기 세미나

  5. Research Review • Jacobsen(1971); discrete allocation problem with one linear resource constraint, marginal allocation approach 적용 • Proteus & Yormark(1972); improved bisection search algorithm • Brown(1979); efficient solution procedures for knapsack-sharing problems with piecewise linear and nonlinear productivity ftns. • Tang(1988); O(mn2) algorithm for a model (gi(X) are all linear, productivity fj(xj) strictly increasing linear ftn.) • Francis and Horak(1994); fast bisection search method 97년 2학기 정기 세미나

  6. Bisection Method for Bottleneck Resource Allocation (1/3) • translation to nondecreasing ftn. (Brown, 1991) • X; feasible sol. • X*; optimal feasible sol. • z*=F(X*) • F(B)≤F(X) ≤z*≤F(C) • z∈[F(B), F(C)] 97년 2학기 정기 세미나

  7. Bisection Method for Bottleneck Resource Allocation (2/3) • fj(.)의 inverse가 존재한다면 • inverse가 존재하지 않는 경우에는 bisection search를 이용하여 구한다. • ε이 주어지면, 일때, ε-OFS라고 한다. • Francis and Horak(1994), Y(z)=(yj(z))는 feasible sol. iff z≤z* 97년 2학기 정기 세미나

  8. Bisection Method for Bottleneck Resource Allocation (3/3) • LB=F(B), UB=F(C) on z* • z=(LB+UB)/2 • F(X)≥z, feasible sol. X가 존재하는지 확인한다.(Y(z)=(yj(z))가 제약식을 만족하는지) • 만족하면 Y(z)는 feasible sol. z가 lower bound • 만족하지 않으면 z가 upper bound • UB-LB≤ε이 될 때까지 반복한다. • Y(LB)가 ε-OFS가 된다. • simple, computationally robust, easy to code 97년 2학기 정기 세미나

  9. Assembly Release Planning Problem (1/5) • Grotzinger and O’Connor (1993) • how many parts to procure in each period • how to allocate these parts to different products (parts allocation decision) • how many component sets for each product to release for assembly in each period (assembly release decision) • based on estimates of probable future demands, service level requirements, inventory considerations • Assemble to forecast environment • n products, m part types, (p+1) procurement lead time, L assembly lead time 97년 2학기 정기 세미나

  10. Assembly Release Planning Problem (2/5) • nonlinear optimization model • linear program for a “feasibility subproblem” incorporating the part allocation and assembly release decision • cumulative availability • actual service level for a product j at time t • target service level; τjt • service level difference = difference between the actual and target service level • Model; Maximize the minimum service level difference over all products and time periods • 만약 optimal이 nonnegative면 target service level을 만족 97년 2학기 정기 세미나

  11. Assembly Release Planning Problem (3/5) • qjt; # of units of product j • aij; # of part i used per unit of product j • Sit; cumulative supply of part i at time t • Aj,L-1; cumulative availability of product j in period (L-1) • Aj,L+t=Aj,L-1+ (qj0+….+qjt) • Dj,L+t; cumulative demand for product j from time period 0 to period (L+t) • fjt (qj0+….+qjt); service level difference for product j at time (L+t) = Prob.{Aj,L-1+ (qj0+….+qjt)≥ Dj,L+t} - τj,L+t • Q=(qjt); product release qty. • (Q)=min{fjt (qj0+….+qjt): j=1 to n, t=0 to p} 97년 2학기 정기 세미나

  12. Assembly Release Planning Problem (4/5) • xjt=qj0+….+qjt ←coupling constraints 97년 2학기 정기 세미나

  13. Assembly Release Planning Problem (5/5) • coupling constraints • LB=F(0), UB=F(U)=min{fjt(ujt)} • wjt(z)=min{xjt:z≤fjt(xjt), xjt=0,1,…,ujt} • yj0(z)=wj0(z) • yjt(z)=max{yj,t-1(z), wjt(z)} =min{xjt:z≤fjt(xjt), xjt=yj,t-1(z), yj,t-1(z)+1,…,ujt} 97년 2학기 정기 세미나

  14. Bisection Algorithm for ARP Problem (1/2) • Step 0: initialization • β←0;γ ← U;LB ← F(0);UB ← F(U); • Step 1: Search Process • REPEAT • z ←(LB+UB)/2; • compute w(z) in [β,γ]; • FOR j=1 to n • Set yj0(z) ←wj0(z); • FOR t=1 to p 97년 2학기 정기 세미나

  15. Bisection Algorithm for ARP Problem (2/2) • Set yjt(z) ←max(yj,t-1(z), wjt(z)); • IF Y(z) satisfies the resource constraints • THEN Set LB ←F(Y(z)) and β ←Y(z); • ELSE Set UB ←z and γ ←Y(z); • UNTIL(UB-LB)≤ε • Step2: ε-optimal solution • FOR j=1 to n • Set qj0=yj0(LB); • FOR t=1 to p • Set qjt=yjt(LB)-yj,t-1(LB); 97년 2학기 정기 세미나

  16. Model Extensions • Precedence Constraints • multi-stage production • cumulative release qty. of product j at time t ≥ cumulative release qty. of product j’ at time t’ • xjt≥xj’t’ for all <(j’,t’), (j,t)> • Part Substitutability • 서비스 수준을 높일 수 있으나 제품 비용을 증가시키고 품질, 신뢰성을 감소시킬 수 있다. • 원하는 서비스 수준에 대하여 총 대체 부품 수를 최소화하는 모델 97년 2학기 정기 세미나

  17. Conclusion • 기본 모델을 coupling, precedence constraint, substitutability를 포함하는 모델로 확장하고, bisection method를 이용하였다. • discrete variables, nonlinear productivity functions, nonlinear resource constraints • determining the smallest bottleneck activity vector Y(z) that achieves the target objective value z is relatively easy • the resource-usage functions satisfy the monotonic resource-feasibility requirement • finding a feasible completion for any bottleneck activity vector X that is resource feasible is relatively easy • Y(z)의 feasibility만 확인하면 되기 때문에 효율이 좋다. 97년 2학기 정기 세미나

More Related