260 likes | 417 Views
Lesson 5. Discrete Filters. Lesson 2 Recap. Lesson 3 and 4 Recap. I nput. Transfer function. O utput. Transfer function. y [n] = 0.5 y[n-1] + x[n] y [n] = (x[n-1]+x[n]+x[n+1])/3. Transfer function. y[n] = 0.5 y[n-1] + x[n]. Transfer function. y[n] = (x[n-1]+x[n]+x[n+1])/3.
E N D
Lesson 5 Discrete Filters
Lesson 3 and 4 Recap Input Transfer function Output
Transfer function • y[n] = 0.5 y[n-1] + x[n] • y[n] = (x[n-1]+x[n]+x[n+1])/3
Transfer function • y[n] = 0.5 y[n-1] + x[n]
Transfer function • y[n] = (x[n-1]+x[n]+x[n+1])/3
IIR and FIR • Infinite Impulse Response (IIR) • Finite Impulse Response (FIR) recursive
Linear Phase • Time shifting
Linear Phase • Example
Inverse Filter • How to remove the effect of a filter with transfer function H(z)?
Frequency Scales fp fst 0.5 fs f(Hz) 0 0.5Ωs Ω=2πf (rad/sec) Ωp Ωst 0 ωst ωp π 0 ω=ΩTs (rad) ωp/π ωst/π 1 0 ω/π
Loss Function • Example
Advantages of FIR • Stability (BIBO: Bounded Input Bounded Output) • Possible linear phase • Efficient implementation (convolution sum via FFT) • Minor disadvantage compared with IIR: a larger number of coefficients results in slightly larger storage
FIR Filter Design • Windowing
FIR Filter Design • The effect of windowing
FIR Filter Design • Shifting
FIR Filter Design • The effect of shifting Linear Phase
FIR Filter Design • Different Window Functions • Rectangular • Triangular or Bartlett • Hamming • Kaiser • Etc.
FIR Filter Design • Example
FIR Filter Design • High-pass filter
Properties of DTFT • Frequency shifting
FIR Filter Design • High-pass filter
FIR Filter Design • Example Design a high-pass filter of order 14 and a cut-off frequency 0.2π using the Kaiser window.