460 likes | 800 Views
Bentley RM Bridge Seismic Design and Analysis. Alexander Mabrich, PE, Msc. AGENDA. Kobe, Japan (1995). AGENDA. Loma Prieta, California (1989). RM Bridge Seismic Design and Analysis. Critical infrastructures require: Sophisticated design methods
E N D
Bentley RM Bridge Seismic Design and Analysis Alexander Mabrich, PE, Msc
AGENDA Kobe, Japan (1995)
AGENDA Loma Prieta, California (1989)
RM Bridge Seismic Design and Analysis • Critical infrastructures require: • Sophisticated design methods • Withstand collapse in earthquake occurrences
RM Bridge Seismic Design and Analysis • AASTHO, Simple Seismic Load • Basic concepts for Dynamic Analysis: - Eigenvalues - Eigenshapes • Two non-linear dynamic options: - Response Spectrum - Time-History
AASHTO Bridge Design Specifications • 7% probability of exceedence in 75years • Seismic Design Categories • Soil • Site / location • Importance • Earthquake Resistant System • Demand/Capacity
AASHTO Bridge Design Specifications • Site Location
AASHTO Bridge Design Specifications • Type of Seismic Analysis Required
Equivalent Static Analysis • Uniform Load Analysis • Orthogonal Displacements • Simultaneously • Fundamental mode
Equivalent Static Analysis • Direction, Factor
Basic Concepts used in Dynamic Analysis
Basic Concepts • Vibration of Systems with one or more DOF • Eigen values and Eigen modes • Forced Vibration • Harmonic and Stochastic Simulation • Linear and Non-linear behavior of the structure
damping constant c spring constant k mass m x amplitude x(t) F external Force F(t) Single Mass Oscillator EQUILIBRIUM EQUATION OF MOTION
Damping Ratio c0:
Free Vibration …no damping…and dividing by m… But.. • Solution:
Numerical Methods for Dynamic Analysis • Calculation of Eigen frequency • Modal Analysis • Direct Time integration, linear and non-linear
Modal Analysis • System of dynamic equations : • Free vibration motion: • Non trivial solution:
Eigen Calculation • Eigen values • Eigen shapes • Unique nature • Differential equations
MASS PARTICIPATION FACTORS [%] MODE phi*M*phi X Y Z SUM-X SUM-Y SUM-Z HERTZ ------------------------------------------------------------------------- 1 0.3768E+04 88.33 0.00 3.14 88.33 0.00 3.14 0.905 2 0.1653E+04 2.35 0.00 71.45 90.68 0.00 74.59 1.704 3 0.8292E+03 0.00 5.03 0.04 90.68 5.03 74.63 3.111 4 0.1770E+04 1.14 0.01 0.05 91.82 5.04 74.68 3.809 5 0.1055E+04 0.28 0.01 0.01 92.10 5.05 74.69 5.425 6 0.1101E+04 0.00 57.35 0.01 92.10 62.40 74.69 6.300 7 0.1675E+04 0.43 0.01 7.31 92.54 62.41 82.00 7.145 8 0.9072E+03 0.17 0.00 0.05 92.70 62.41 82.05 9.656 9 0.5307E+04 0.13 0.04 3.98 92.83 62.45 86.03 10.042 10 0.1038E+04 0.06 0.01 0.04 92.90 62.46 86.08 11.795 11 0.1405E+04 0.13 0.01 0.00 93.02 62.47 86.08 11.830 12 0.1671E+04 0.74 0.01 0.03 93.77 62.48 86.10 13.265 13 0.4010E+03 1.74 0.00 0.04 95.51 62.49 86.14 13.321 14 0.8892E+03 0.00 0.43 0.05 95.51 62.92 86.20 13.890 15 0.5452E+04 0.01 0.03 0.25 95.52 62.95 86.45 14.077 16 0.1986E+04 0.08 0.03 0.87 95.59 62.97 87.32 16.719 17 0.6586E+03 0.03 5.91 0.03 95.63 68.88 87.35 16.936 18 0.6484E+03 0.09 3.54 0.00 95.72 72.42 87.35 16.961 19 0.1086E+04 0.00 7.02 0.00 95.72 79.44 87.35 17.275 20 0.1866E+04 0.02 0.01 0.00 95.74 79.45 87.35 18.408 21 0.1310E+04 0.11 0.00 3.47 95.85 79.45 90.82 21.221 22 0.2060E+04 0.06 0.00 0.00 95.91 79.45 90.82 22.277 23 0.1474E+04 0.06 0.00 0.00 95.97 79.45 90.83 24.414 24 0.2324E+04 0.04 0.00 0.00 96.00 79.45 90.83 24.983 25 0.1613E+04 0.00 0.00 0.00 96.01 79.45 90.83 26.843
Response Spectrum Modal Decomposition
Response Spectrum • Combination of natural modes • One mass oscillator • Oscillating loads • Intensity factor • Single contribution • Synchronization by Stochastic Calculation Rules: ABS,SRSS,CQC, etc
Spectral Response Acceleration AASHTO Definition
Solution in Frequency Domain • Solution by combining the contributions of the eigenvectors • Superposition of eigenvectors • Loading has lost information about correlation during conversion • Solution has no information on phase differences between the contributions of different eigenvectorsUse Stochastic methodology • Use Stochastic methodology
Combination Rules • Max/Min results with different rules available: • ABS – Rule (Sum of absolute values) • SRSS – Rule (Square root of sum of sqaures) • DSC – Rule (Newmark/Rosenblueth) • CQC – Rule (Complete quadratic combination) • GENERAL : a lot of other rules exist
Time-History Time Integration
Time History • Direct Time Integration • Linear and Non-Linear analysis • Standard event is defined: time-histories of ground acceleration are site specific • Probability of bearable damage • Most accurate method to evaluate structure response under earthquake event.
What Can Be Non-Linear in RM Bridge? Structure-stiffness - Springs - Connections - Materials - Interaction between the substructure and bridge - Large deformations - Cables Mass of structure - Moving vehicle traffic Structure-damping - Raleigh damping effect - Viscous damping Load dependent on time - Change of position, intensity or direction - Time delay of structural elements
Comparison MODAL ANALYSIS • Solution of uncoupled differential equations • Each eigenmode as single mass oscillator • Coupled system of differential equations • Time domain approximated • Static starting condition • Analysis of secondary systems: vehicles, equipment, extra bridge features • All Non-Linearities possible TIME-HISTORY
Element 105 Element 110 Element 125 Element 131 Element 118 40 m 60 m 40 m Application Example
Bentley RM Bridge Seismic Analysis Conclusions
RM Bridge Benefits • Bentley BrIM vision • Bentley portfolio • Intuitive step-by-step calculation • One tool for all: static, modal, time-history • Integrated reports and drawings
Thank you for your attention! Alex.Mabrich@bentley.com