200 likes | 370 Views
A Comparison of Step 3 & Step 4. Timothy Carlisle, Oxford CM 28. Step 3. Step 3 rematched for 830 mm spool piece Calc. B(z) & BetaFn with the following: Minimize F at 1 point in a const. field region in 2 nd Tracker. Matching Step 3. Beta Fn. [cm]. 140 120 100 80 60 40 20.
E N D
A Comparison of Step 3 & Step 4 Timothy Carlisle, Oxford CM 28
Step 3 rematched for 830 mm spool piece Calc. B(z) & BetaFn with the following: Minimize F at 1 point in a const. field region in 2nd Tracker. Matching Step 3 Beta Fn. [cm] 140 120 100 80 60 40 20 -5 -4 -3 -2 -1 0 z [m] • Many solutions... F = 0.5*(βγ0 - αα0 + β0γ)
Step 3 Empty: 6mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] M1 = 158.9 M2 = 92.4 -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] Av. Pz [MeV/c 6.08 6.06 6.04 6.02 6 Emittance [mm] 202 201.5 201 200.5 200 199.5 -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]
Amplitude Cooling... Step 3 empty Step 4 empty Amp OUT Amp OUT 140 120 100 80 60 40 20 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Amp IN Amp IN 6mm beam, SigPz = 1 MeV/c, 100k muons
Amplitude Cooling... Step 3: LiH Step 4: LH2 Amp OUT Amp OUT 140 120 100 80 60 40 20 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 AmpIN Amp IN 6mm beam, SigPz = 1 MeV/c, 100k muons
Theoretical Cooling Performance de/e Input beam emittance [mm]
G4MICE : 100k mu, SigPz =1 MeV/c heating cooling
de/e heating Input beam emittance [mm] cooling
Focus Coil switched off No LH2 Minimized Fn at z= -0.3 m ~ centre of 2nd Tracker Range of solutions: Step IV but without FC 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis -4 -2 0 z [m] 160 140 120 100 80 60 40 20 F = 0.5*(βγ0 - αα0 + β0γ) Beta Fn. [cm] -5 -4 -3 -2 -1 0 z [m]
Transmission 6mm beam, SigPz = 1 MeV/c, 100k muons Step 4: No FC currents Step 3: Empty Step 4: Empty 100 99.5 99 98.5 98 97.5 100 99.8 99.6 99.4 99.2 90 100 99.8 99.6 99.4 99.2 90 Raw Beam 1000 mu 1% 400 mu 0.4% 400 mu 0.4% Transmitted within Tracker Quality cut: Amp < 16*Av. e -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]
Conclusions • Clearly more difficult to measure cooling in Step 3 • ~10 x more heating than Step 4 • Step 3 cooling disagrees with theory • e0 < theory – don’t know why (same in ICOOL) • Need to include Tracker reconstruction... • It appears we can run Step 4 without FC currents • Is this useful– Trackers? • Can we run Step 4 with no currents in M1,M2 & FC? • Alignments?
Step 3 – comparison with existing data.. Empty Channel LiH absorber 6% 3% 0 -2% -4% 5% 2% 0 heating heating cooling 0 1 2 3 4 5 6 7 8 9 10 Input emittance [mm] 0 1 2 3 4 5 6 7 8 9 10 Input emittance [mm] Black Data: 100k mu, SigPz =1 MeV/c, G4MICE MarcoData: 10k mu, SigPz = big (10%), ICOOL – note 199
Step3 Empty: 1mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 M1 = 158.9 M2 = 92.4 B(z) on Axis Bz [T] on Axis Beta Fn. [cm] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] Av. Pz [MeV/c 200.4 200.3 200.2 200.1 200 Emittance [mm] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]
Step 3 LiH: 6mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] M1 = 158.9 M2 = 92.4 -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 z [m] 210 208 206 204 202 200 198 196 194 5.9 5.85 5.8 5.75 5.7 Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]
Step 4 Empty: 6mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] Beta Fn. [cm] -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 2 z [m] 5.952 5.95 5.948 5.946 5.944 5.942 202 201.5 201 200.5 200 Av. Pz [MeV/c Emittance [mm] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]
Step 4 LH2: 6mm e beam SigPz = 1 MeV/c, 70k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] -6 -4 -2 0 z [m] -6 -4 -2 0 2 z [m] 5.9 5.7 208 206 204 202 200 198 196 Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]
Step 3 Empty Step 4 Empty Output AmpSq • Step 3 LiH • Step 4 LH2