1 / 23

Common-Source (Emitter) Amplifiers with Resistive Loads

Common-Source (Emitter) Amplifiers with Resistive Loads. Dr. Paul Hasler. V dd. V dd = 5.0V. GND. Basic Resistive Load Circuits. R 1. R 1. V out. V out. V in. V in. GND. Common E / S: Resistive Load. V dd. V dd = 5.0V. GND. Common Source / Emitter. Output Voltage Bias = 3.0V.

xaviere
Download Presentation

Common-Source (Emitter) Amplifiers with Resistive Loads

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Common-Source (Emitter) Amplifiers with Resistive Loads Dr. Paul Hasler

  2. Vdd Vdd= 5.0V GND Basic Resistive Load Circuits R1 R1 Vout Vout Vin Vin GND

  3. Common E / S: Resistive Load

  4. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Vout Vout Vin Vin GND

  5. Vdd Vdd= 5.0V GND What is the bias current? Iref = (2V) / R1 Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Vout Vout Vin Vin GND

  6. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Vin Vin GND

  7. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Vin Vin GND BJT / Subthreshold VT (2V) / R1 = Ico eVin/UT

  8. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Vin Vin GND BJT / Subthreshold VT (2V) / R1 = Ico eVin/UT Vin = UT ln ( (2V) / R1 Ico )

  9. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Vin Vin GND BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (2V) / R1 = Ico eVin/UT Vin = UT ln ( (2V) / R1 Ico )

  10. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Vin Vin GND BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (2V) / R1 = (K/2) (Vin - VT )2 (2V) / R1 = Ico eVin/UT Vin = VT + sqrt( (4V) / (K R1) ) Vin = UT ln ( (2V) / R1 Ico )

  11. Vdd Vdd= 5.0V GND Common Source / Emitter Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Have bias Vin Vin Vin GND

  12. V3 + V - V1 rp gmV ro V2 V2 Small-Signal Modeling V3 V3 I I V1 V1 V2 V2 rp gm ro Av BJT (UTb) / I I / UT VA / I VA / UT Above VT MOSFET 2I /(V1-V2 -VT) VA / I 2VA/(V1-V2 -VT)  Sub VT MOSFET kI / UT  VA / I kVA / UT

  13. Vdd Vdd= 5.0V GND Small-Signal Model Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Have bias Vin Vin Vin GND Compute Transconductance (gm)

  14. Vdd Vdd= 5.0V GND Small-Signal Model Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Have bias Vin Vin Vin GND Compute Transconductance (gm) BJT / Subthreshold VT gm = I / UT = (2V) / (R1 UT)

  15. Vdd Vdd= 5.0V GND Small-Signal Model Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Have bias Vin Vin Vin GND Compute Transconductance (gm) BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) gm = 2I /(Vin -VT) = (4V) / (R1 (Vin -VT) ) gm = I / UT = (2V) / (R1 UT)

  16. Vdd Vdd= 5.0V GND Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) )

  17. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) )

  18. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Gain = - gmR1 = - [ (2V) /(R1UT) ] R1 = - (2V) /UT

  19. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Gain = - gmR1 = - [ (2V) /(R1UT) ] R1 = - (2V) /UT or Gain = -(4V) / (Vin -VT)

  20. Vdd Vdd= 5.0V GND GND Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Vout Vin + V - gmV R1 rp ro

  21. Vdd Vdd= 5.0V GND GND Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Vout Vin Gain = - [(2V) / UT ][1 + (2V)/ VA ] + V - or gmV R1 rp ro Gain = -[(4V)/(Vin -VT)][1 + (2V)/ VA ]

  22. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Gain = - (2V) /UT or Gain = -(4V) / (Vin -VT)

  23. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Gain = - (2V) /UT or Gain = -(4V) / (Vin -VT) Output Resistance = R1

More Related