1 / 63

ENAM04, Callaway Gardens , September 2004

Fundamental Symmetries and Interactions. ENAM04, Callaway Gardens , September 2004. Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen. What is Fundamental Forces and Symmetries Fundamental Fermions Discrete Symmetries Properties of Known Basic Interactions

xenon
Download Presentation

ENAM04, Callaway Gardens , September 2004

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fundamental Symmetries and Interactions ENAM04, Callaway Gardens, September 2004 Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen • What is Fundamental • Forces and Symmetries • Fundamental Fermions • Discrete Symmetries • Properties of Known Basic Interactions •  only touching a few examples

  2. Fundamental Symmetries and Interactions ENAM04, Callaway Gardens, September 2004 Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen Drawing on : • Work of NuPECC Long Range Plan Working group on Fundamental Interactions, 2003 • NSAC Long Range Plan 2002 • EURISOL Physics Case 2004 • Workshop on “Fundamental Interactions“ at ECT*, June 21-25, 2004

  3. of NuPECC working group 2003 Recommendations Physics Topics • Theoretical Support • Positions at Universities • Experimentalists and Theorists • High Power Proton Driver • Several MW • Target Research • Cold and Ultracold Neutrons • Low Energy Radioactive Beams • Improved Trapping Facilities • Underground Facilities Adequate Environment Human resources Facilities • The Nature of Neutrinos • Oscillations/ Masses/ 0n2b-decay • T and CP Violation • edm’s, D (R) coeff. in b-decays, D0 • Rare and Forbidden Decays • 0n2b-decay, n-nbar, M-Mbar, meg, • m 3e, m N N e • Correlations in b-decay • non V-A in b-decay • Unitarity of CKM-Matrix • n-, p-b, (superallowed b), K-decays • Parity Nonconservation in Atoms • Cs, Fr, Ra, Ba+, Ra+ • CPT Conservation • n, e, p, m • Precision Studies within The Standard Model • Constants, QCD,QED, Nuclear Structure Fundamental Symmetries & Interactions

  4. Relating to a MW Proton Machine Recommendations Physics Topics • Theoretical Support • Positions at Universities • Experimentalists and Theorists • High Power Proton Driver • Several MW • Target Research • Cold and Ultracold Neutrons • Low Energy Radioactive Beams • Improved Trapping Facilities • Underground Facilities Adequate Environment Human resources Facilities • The Nature of Neutrinos • Oscillations/ Masses/ 0n2b-decay • T and CP Violation • edm’s, D (R) coeff. in b-decays, D0 • Rare and Forbidden Decays • 0n2b-decay, n-nbar, M-Mbar, meg, • m 3e, m N N e • Correlations in b-decay • non V-A in b-decay • Unitarity of CKM-Matrix • n-, p-b, (superallowed b), K-decays • Parity Nonconservation in Atoms • Cs, Fr, Ra, Ba+, Ra+ • CPT Conservation • n, e, p,m • Precision Studies within The Standard Model • Constants, QCD,QED, Nuclear Structure Fundamental Symmetries & Interactions

  5. Forces and Symmetries • Local Symmetries  Forces • fundamental interactions • Global Symmetries  Conservation Laws • energy • momentum • electric charge • lepton number • charged lepton family number • baryon number • ….. ? What are we concerned with ? fundamental := “ forming a foundation or basis a principle, law etc. serving as a basis” Fundamental Symmetries & Interactions

  6. Standard Model • 3 Fundamental Forces • ElectromagneticWeak Strong • 12 Fundamental Fermions • Quarks, Leptons • 13 Gauge Bosons • g,W+, W-, Z0, H, 8 Gluons ? What are we concerned with ? fundamental := “ forming a foundation or basis a principle, law etc. serving as a basis” • However • many open questions • Why 3 generations ? • Why some 30 Parameters? • Why CP violation ? • Why us? • ….. • Gravitynot included • No Combind Theory of • Gravity and Quantum Mechanics Fundamental Symmetries & Interactions

  7. Gravitation Gravitation Electro - Electro - Magnetism Magnetism Magnetism Magnetism Maxwell Electricity Electricity ? ? Physics within the Standard Model Glashow, Salam, t'Hooft, Veltman,Weinberg Weak Weak Electro - Weak Electro - Weak Standard Model Standard Model Strong Strong Grand Grant Unification Unification not yet known? not yet known? Fundamental Interactions – Standard Model Physics outside Standard Model Searches for New Physics Fundamental Symmetries & Interactions

  8. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay Fundamental Symmetries & Interactions

  9. Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana •  Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated  Spectrometer • Long Baseline Experiments • b-beams • new neutrino detectors ? Fundamental Symmetries & Interactions

  10. Directional sensitivity • for low energies ? • Air shower ? • Salt Domes ? R. de Meijer, et al., Nucl.Phys.News 2004 Vol 2 Neutrino-Experiments Are there new detection schemes ? • Water Cherenkov • Scintillators • Liquid Argon • . . . Only for Non- Accelerator Neutrinos ? Fundamental Symmetries & Interactions

  11. Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana •  Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated  Spectrometer • Long Baseline Experiments • b-beams • new neutrino detectors ? Fundamental Symmetries & Interactions

  12. CUORICINO Neutrinoless Double b-Decay (A,Z)  (A,Z+2) + 2e- 1/T 1/2 = G0n (E0,Z) | MGT + (gV/gA)2 ·MF|2<mn>2 • confirmation of Heidelberg-Moscow • needed • independent experiment(s) with different • technologies required • need nuclear matrix elements Fundamental Symmetries & Interactions

  13. Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana •  Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated  Spectrometer: KATRIN • Long Baseline Experiments • b-beams • new neutrino detectors ? Fundamental Symmetries & Interactions

  14. Direct n mass Measurements: Towards KATRIN Present Limit : m(ne) < 2.2 eV (95% C.L.) KATRIN sensitivity : some 10 times better Fundamental Symmetries & Interactions

  15. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay Fundamental Symmetries & Interactions

  16. CKM Matrix couples weak and mass quark eigenstaes: Often found: 0.221(6) 0.9739(5) Nuclear b-decays D = 0.0032 (14) ? Unitarity: -D • Neutron decay • = 0.0083(28) • = 0.0043(27) -D Unitarity of Cabbibo-Kobayashi-Maskawa Matrix If you pick your favourite Vus ! Fundamental Symmetries & Interactions

  17. Experimental Possibilities 0.9737(39) 0.9729(12) Nuclear b-decays D = 0.0032 (14) ? • Neutron decay • = 0.0083(28) • = 0.0043(27) Unitarity of Cabbibo-Kobayashi-Maskawa Matrix Fundamental Symmetries & Interactions

  18. Fundamental Symmetries & Interactions

  19. KTeV 0.2252(22) D = 0.0017 (14) Unitarity of Cabbibo-Kobayashi-Maskawa Matrix • May relate to New Physics • Heavy Quark Mixing, Z‘,Extra Dimensions, Charged Higgs, • SUSY, exotic muon decays, ... , more generations ! • Unfortunatetly: Situation (is) was a big Mess ! • Vud :superallowed b-decays 0.9740(1)(3)(4) • neutron decay 0.9729(4)(11)(4) 0.9739(5) • pion-b decay 0.9737(39)(2) • Vus : Hyperons 0.2250(27) D = 0.0019 (16) • K+e3 0.2238(30)D = 0.0014 (17) • K0e3 0.2148(24) D = 0.0054 (14)Problem ! • What can be done? Higher precision round ? • Improve reliability of experiments independently pion- b decay (theory clean!) , maybe: neutron- decay • Analyse existing K data, Ke3 experiments • Search for exotic muon decays • Improve Theory } Recent up to date review: Czarnecki,Marciano, Sirlin hep-ph/0406324 Numbers Compiled by W. Marciano, March ‘04 Fundamental Symmetries & Interactions

  20. Unitarity of Cabbibo-Kobayashi-Maskawa Matrix ? errors too small ? Czarnecki,MarcianoSirlin hep-ph/0406324 Fundamental Symmetries & Interactions

  21. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay Fundamental Symmetries & Interactions

  22. Vector [Tensor] Scalar [Axial vector] b+ ne b+ ne New Interactions in Nuclear and Muon b-Decay In Standard Model: Weak Interaction is V-A Scielzo,Freedman, Fujikawa, Vetter PRL 93, 102501-1 (3 Sep 2004) 21 Na : a exp = 0.5243(91) a theor = 0.558(6)  branching ratio measurement needed In general b-decay could be also S , P, T • nuclear b-decays, Experiments in Traps • muon decays, Michel parameters Fundamental Symmetries & Interactions

  23. TRImP Magnetic separator D Q Q D Wedge Q Q Q D Q D Production target Q Q Ion catcher (gas-cell or thermal ioniser) AGOR cyclotron RFQ cooler/buncher MOT Low energy beam line Combined Fragment and Recoil Separator MOT Fundamental Symmetries & Interactions

  24. Separator commissioning TRIP N-Z Dispersive plane Achromatic focus Detector 1 Dispersive plane QD QD DD DD QD QD T1 Achromatic focus Detector 2 AGOR beam B = p/q  v A/Z TOF  A/Z E  A2 Traps Fundamental Symmetries & Interactions

  25. TRIP Separator commissioning QD 106 DD 21Na QD 20Ne Achromatic focus Detector 2 104 Energy loss [arb] 102 Traps TOF [arb] Detector 1 Dispersive plane QD DD QD T1 AGOR beam B = p/q  v A/Z TOF  A/Z E  A2 Fundamental Symmetries & Interactions

  26. Traps for weak interaction physics : 1. Atom traps : - TRIUMF-ISAC, 38mK, -correlation (J. Behr et al.) A. Gorelov et al., Hyperfine Interactions 127 (2000) 373 - LBNL & UC Berkeley, 21Na, -correlation (S.J. Freedman et al.) N. Scielzo, Ph. D. Thesis (2003) - LANL Los Alamos, 82Rb, -asymmetry (D. Vieira et al.) S.G. Crane et al., Phys. Rev. Lett. 86 (2001) 2967 - KVI-Groningen, Na, Ne, Mg, D-coefficient (K. Jungmann et al.) Ra, EDM experiment G.P. Berg et al., NIM B204 (2003) 526 2. Ion traps : - LPC-Caen, 6He, -correlation (O. Naviliat-Cuncic et al.) G. Ban et al., NIM A518 (2004) 712 - WITCH, Leuven-ISOLDE, 35Ar, -correlation (N. Severijns et al.) D. Beck et al., Nucl. Inst. Methods Phys. Res., A 503 (2003) 567 - CPT-trap Argonne, 14O, -correlation (G. Savard et al.) G. Savard et al., Nucl. Phys. A654 (1999) 961c - ISOLTRAP-CERN, mass for 0+  0+ decays (K. Blaum et al.) Fundamental Symmetries & Interactions from N. Severijns

  27. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance Fundamental Symmetries & Interactions

  28. P C T matter anti-matter time   time mirror image from H.W. Wilschut The World according to Escher anti-particle particle e+ e- Fundamental Symmetries & Interactions

  29. P C T matter anti-matter time   time mirror image Time Reversal Violation can be measured at low energies from H.W. Wilschut The World according to Escher identical to start start anti-particle particle e+ e- Fundamental Symmetries & Interactions

  30. Permanent Electric Dipole Moments Violate Discrete Fundmental Symmetries EDM violates: • Parity • Timereversal • CP- conservation (if CPT conservation assumed) Standardd Model values are tiny, hence: An observedEDM would be Sign of New Physics beyond Standard Theory Fundamental Symmetries & Interactions

  31. EDMs – Where do they come from ?(are they just “painted“ to particles? Why different experiments? ) • electron intrinsic ? • quark intrinsic ? • muon second generation different ? • neutron/ proton from quark EDM ? property of strong interactions ? new interactions ? • deuteron basic nuclear forces CP violating? pion exchange ? • 6Li many body nuclear mechanism ? • heavy nuclei (e.g. Ra, Fr) enhancement by CP-odd nuclear forces, nuclear “shape“ • atoms can have large enhancement, sensitive to electron or nucleus EDMs • molecules large enhancement factors , sensitive to electron EDM • . . . Fundamental Symmetries & Interactions

  32. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  33. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  34. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  35. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  36. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  37. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  38. Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu

  39. Generic EDM Experiment Preparation of “pure“ J state Interaction with E - field Analysis of state Determination of Ensemble Spin average Polarization Spin Rotation electric dipole moment: D = x c-1 J Spin precession : e DJ hJ Example:D=10-24 e cm, E=100 kV/cm, J=1/2 e 15.2 mHz Fundamental Symmetries & Interactions

  40. molecules: 1.610-27 • • 199Hg Radium potential Start TRIP de (SM) < 10-37 Some EDM Experiments compared New 2004 from muon g-2: d (muon) < 2.810-19 Fundamental Symmetries & Interactions after E.Hinds

  41. How does a ring edm experiment work ? • Exploit huge motional electric fields for relativistic particles in high magnetic fields • stop g-2 precession • observe spin rotation • Concept works also for (certain) Nuclei: D , 6Li, 223Fr, . . N+ N+ N+ One needs for a successful experiment: • polarized, fast beam • magnetic storage ring • polarimeter For muons exploit decay asymmetry • One could use -decay • In general: any sensitive polarimeter works N+ Fundamental Symmetries & Interactions

  42. Nucleus Spin J /N Reduced Anomaly a T 1/2 13957La 7/2 +2.789 -0.0305 12351Sb 7/2 2.550 -0.1215 13755Cs 7/2 +2.8413 0.0119 30y 22387Fr 3/2 +1.17 <0.02 22 min 63Li 1 +0.8220 -0.1779 21H 1 +0.8574 -0.1426 7532Ge 1/2 +0.510 +0.195 82.8 m Need Schiff moment calculations: Particularly in region of octupole deformed nuclei 15769Tm 1/2 +0.476 0.083 3.6 m Some Candidate Nuclei for EDM in Ring Searches Fundamental Symmetries & Interactions

  43. Why the deuteron edm experiment “ “ C.P. Liu and R.G.E Timmermans, nucl-th/0408060, PRC accepted Fundamental Symmetries & Interactions

  44. RF causes effective p/p < 10-5 Inject cc and ccw polarimeter Radius ?  determined by many parameters , yet not all fully explored For details: F. Farley et al., Phys.Rev.Lett. 93, 052001,2004 Fundamental Symmetries & Interactions

  45. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance Fundamental Symmetries & Interactions

  46. TimeReversalViolationin -decay: Correlation measurements • R andDtestboth Time Reversal Violation • D most potential • R scalar and tensor (EDM, a) • technique D measurements yield a, A, b, B Fundamental Symmetries & Interactions

  47. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance Fundamental Symmetries & Interactions

  48. Lepton Magnetic Anomalies in CPT and Lorentz Non - Invariant Models | | - m m - 0 0 18 CPT tests K K = £ r 10 K m 0 K - - | g g | | a a | - + - + - - 3 12 e e e e = = × × £ × r 1.2 10 2 10 e g a avg avg ? ? Are they comparable - Which one is appropriate • often quoted: • K0- K0 mass difference (10-18) • e- - e+ g- factors (2* 10-12) • We need an interaction • with a finite strength! Use common ground, e.g. energies Þ generic CPT and Lorentz violating DIRAC equation 1 n μ μ μ μν μ μ ν ψ - - - - + + = (i γ D m a γ b γ γ H σ ic γ D id γ γ D ) 0 μ μ μ 5 μν μν μν 5 2 º ¶ - iD i qA m μ μ a , b break CPT a , b , c , d , H break Lorentz Invariance μ μ μ μ μν μν μν Leptons in External Magnetic Field - + l l l = - » - Δω ω ω 4b a a a 3 - + l l - | E E | Δω h spin up spin down a = » r l - 2 l m c E l spin up 57 Bluhm , Kostelecky, Russell, Phys. Rev. D ,3932 (1998) For g - 2 Experiments : - | a a | ω h = × c - + l l r l 2 a m c avg l Dehmelt, Mittleman,Van Dyck, Schwinberg, hep - ph/9906262 Þ - - 21 24 £ × £ × r 1.2 10 r 3.5 10 electron muon μ e : : CPT– Violation Lorentz Invariance Violation • What is best CPT test ? • New Ansatz (Kostelecky) • K 10-21 GeV • n  10-30 GeV • p  10-24 GeV • e 10-27 GeV • m 10-23GeV • Future: • Anti hydrogen 10-17 GeV Fundamental Symmetries & Interactions

  49. CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2* 10-23 GeV Muon g-2: new interaction below 4* 10-22 GeV (CERN) 15 times better expected from BNL when analysis will be completed V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001) Fundamental Symmetries & Interactions

  50. Properties of Known Basic Interactions • Electromagnetism and Fundamental Constants • QED, Lamb Shift • Muonium and Muon g-2 • Muonic Hydrogen and Proton Radius • Exotic Atoms • Does aQED vary with time? • QCD • Strong Interaction Shift • Scattering Lengths • Gravity • Hints of strings/Membranes? Fundamental Symmetries & Interactions

More Related