630 likes | 788 Views
Fundamental Symmetries and Interactions. ENAM04, Callaway Gardens , September 2004. Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen. What is Fundamental Forces and Symmetries Fundamental Fermions Discrete Symmetries Properties of Known Basic Interactions
E N D
Fundamental Symmetries and Interactions ENAM04, Callaway Gardens, September 2004 Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen • What is Fundamental • Forces and Symmetries • Fundamental Fermions • Discrete Symmetries • Properties of Known Basic Interactions • only touching a few examples
Fundamental Symmetries and Interactions ENAM04, Callaway Gardens, September 2004 Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen Drawing on : • Work of NuPECC Long Range Plan Working group on Fundamental Interactions, 2003 • NSAC Long Range Plan 2002 • EURISOL Physics Case 2004 • Workshop on “Fundamental Interactions“ at ECT*, June 21-25, 2004
of NuPECC working group 2003 Recommendations Physics Topics • Theoretical Support • Positions at Universities • Experimentalists and Theorists • High Power Proton Driver • Several MW • Target Research • Cold and Ultracold Neutrons • Low Energy Radioactive Beams • Improved Trapping Facilities • Underground Facilities Adequate Environment Human resources Facilities • The Nature of Neutrinos • Oscillations/ Masses/ 0n2b-decay • T and CP Violation • edm’s, D (R) coeff. in b-decays, D0 • Rare and Forbidden Decays • 0n2b-decay, n-nbar, M-Mbar, meg, • m 3e, m N N e • Correlations in b-decay • non V-A in b-decay • Unitarity of CKM-Matrix • n-, p-b, (superallowed b), K-decays • Parity Nonconservation in Atoms • Cs, Fr, Ra, Ba+, Ra+ • CPT Conservation • n, e, p, m • Precision Studies within The Standard Model • Constants, QCD,QED, Nuclear Structure Fundamental Symmetries & Interactions
Relating to a MW Proton Machine Recommendations Physics Topics • Theoretical Support • Positions at Universities • Experimentalists and Theorists • High Power Proton Driver • Several MW • Target Research • Cold and Ultracold Neutrons • Low Energy Radioactive Beams • Improved Trapping Facilities • Underground Facilities Adequate Environment Human resources Facilities • The Nature of Neutrinos • Oscillations/ Masses/ 0n2b-decay • T and CP Violation • edm’s, D (R) coeff. in b-decays, D0 • Rare and Forbidden Decays • 0n2b-decay, n-nbar, M-Mbar, meg, • m 3e, m N N e • Correlations in b-decay • non V-A in b-decay • Unitarity of CKM-Matrix • n-, p-b, (superallowed b), K-decays • Parity Nonconservation in Atoms • Cs, Fr, Ra, Ba+, Ra+ • CPT Conservation • n, e, p,m • Precision Studies within The Standard Model • Constants, QCD,QED, Nuclear Structure Fundamental Symmetries & Interactions
Forces and Symmetries • Local Symmetries Forces • fundamental interactions • Global Symmetries Conservation Laws • energy • momentum • electric charge • lepton number • charged lepton family number • baryon number • ….. ? What are we concerned with ? fundamental := “ forming a foundation or basis a principle, law etc. serving as a basis” Fundamental Symmetries & Interactions
Standard Model • 3 Fundamental Forces • ElectromagneticWeak Strong • 12 Fundamental Fermions • Quarks, Leptons • 13 Gauge Bosons • g,W+, W-, Z0, H, 8 Gluons ? What are we concerned with ? fundamental := “ forming a foundation or basis a principle, law etc. serving as a basis” • However • many open questions • Why 3 generations ? • Why some 30 Parameters? • Why CP violation ? • Why us? • ….. • Gravitynot included • No Combind Theory of • Gravity and Quantum Mechanics Fundamental Symmetries & Interactions
Gravitation Gravitation Electro - Electro - Magnetism Magnetism Magnetism Magnetism Maxwell Electricity Electricity ? ? Physics within the Standard Model Glashow, Salam, t'Hooft, Veltman,Weinberg Weak Weak Electro - Weak Electro - Weak Standard Model Standard Model Strong Strong Grand Grant Unification Unification not yet known? not yet known? Fundamental Interactions – Standard Model Physics outside Standard Model Searches for New Physics Fundamental Symmetries & Interactions
Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay Fundamental Symmetries & Interactions
Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana • Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated Spectrometer • Long Baseline Experiments • b-beams • new neutrino detectors ? Fundamental Symmetries & Interactions
Directional sensitivity • for low energies ? • Air shower ? • Salt Domes ? R. de Meijer, et al., Nucl.Phys.News 2004 Vol 2 Neutrino-Experiments Are there new detection schemes ? • Water Cherenkov • Scintillators • Liquid Argon • . . . Only for Non- Accelerator Neutrinos ? Fundamental Symmetries & Interactions
Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana • Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated Spectrometer • Long Baseline Experiments • b-beams • new neutrino detectors ? Fundamental Symmetries & Interactions
CUORICINO Neutrinoless Double b-Decay (A,Z) (A,Z+2) + 2e- 1/T 1/2 = G0n (E0,Z) | MGT + (gV/gA)2 ·MF|2<mn>2 • confirmation of Heidelberg-Moscow • needed • independent experiment(s) with different • technologies required • need nuclear matrix elements Fundamental Symmetries & Interactions
Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana • Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated Spectrometer: KATRIN • Long Baseline Experiments • b-beams • new neutrino detectors ? Fundamental Symmetries & Interactions
Direct n mass Measurements: Towards KATRIN Present Limit : m(ne) < 2.2 eV (95% C.L.) KATRIN sensitivity : some 10 times better Fundamental Symmetries & Interactions
Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay Fundamental Symmetries & Interactions
CKM Matrix couples weak and mass quark eigenstaes: Often found: 0.221(6) 0.9739(5) Nuclear b-decays D = 0.0032 (14) ? Unitarity: -D • Neutron decay • = 0.0083(28) • = 0.0043(27) -D Unitarity of Cabbibo-Kobayashi-Maskawa Matrix If you pick your favourite Vus ! Fundamental Symmetries & Interactions
Experimental Possibilities 0.9737(39) 0.9729(12) Nuclear b-decays D = 0.0032 (14) ? • Neutron decay • = 0.0083(28) • = 0.0043(27) Unitarity of Cabbibo-Kobayashi-Maskawa Matrix Fundamental Symmetries & Interactions
KTeV 0.2252(22) D = 0.0017 (14) Unitarity of Cabbibo-Kobayashi-Maskawa Matrix • May relate to New Physics • Heavy Quark Mixing, Z‘,Extra Dimensions, Charged Higgs, • SUSY, exotic muon decays, ... , more generations ! • Unfortunatetly: Situation (is) was a big Mess ! • Vud :superallowed b-decays 0.9740(1)(3)(4) • neutron decay 0.9729(4)(11)(4) 0.9739(5) • pion-b decay 0.9737(39)(2) • Vus : Hyperons 0.2250(27) D = 0.0019 (16) • K+e3 0.2238(30)D = 0.0014 (17) • K0e3 0.2148(24) D = 0.0054 (14)Problem ! • What can be done? Higher precision round ? • Improve reliability of experiments independently pion- b decay (theory clean!) , maybe: neutron- decay • Analyse existing K data, Ke3 experiments • Search for exotic muon decays • Improve Theory } Recent up to date review: Czarnecki,Marciano, Sirlin hep-ph/0406324 Numbers Compiled by W. Marciano, March ‘04 Fundamental Symmetries & Interactions
Unitarity of Cabbibo-Kobayashi-Maskawa Matrix ? errors too small ? Czarnecki,MarcianoSirlin hep-ph/0406324 Fundamental Symmetries & Interactions
Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay Fundamental Symmetries & Interactions
Vector [Tensor] Scalar [Axial vector] b+ ne b+ ne New Interactions in Nuclear and Muon b-Decay In Standard Model: Weak Interaction is V-A Scielzo,Freedman, Fujikawa, Vetter PRL 93, 102501-1 (3 Sep 2004) 21 Na : a exp = 0.5243(91) a theor = 0.558(6) branching ratio measurement needed In general b-decay could be also S , P, T • nuclear b-decays, Experiments in Traps • muon decays, Michel parameters Fundamental Symmetries & Interactions
TRImP Magnetic separator D Q Q D Wedge Q Q Q D Q D Production target Q Q Ion catcher (gas-cell or thermal ioniser) AGOR cyclotron RFQ cooler/buncher MOT Low energy beam line Combined Fragment and Recoil Separator MOT Fundamental Symmetries & Interactions
Separator commissioning TRIP N-Z Dispersive plane Achromatic focus Detector 1 Dispersive plane QD QD DD DD QD QD T1 Achromatic focus Detector 2 AGOR beam B = p/q v A/Z TOF A/Z E A2 Traps Fundamental Symmetries & Interactions
TRIP Separator commissioning QD 106 DD 21Na QD 20Ne Achromatic focus Detector 2 104 Energy loss [arb] 102 Traps TOF [arb] Detector 1 Dispersive plane QD DD QD T1 AGOR beam B = p/q v A/Z TOF A/Z E A2 Fundamental Symmetries & Interactions
Traps for weak interaction physics : 1. Atom traps : - TRIUMF-ISAC, 38mK, -correlation (J. Behr et al.) A. Gorelov et al., Hyperfine Interactions 127 (2000) 373 - LBNL & UC Berkeley, 21Na, -correlation (S.J. Freedman et al.) N. Scielzo, Ph. D. Thesis (2003) - LANL Los Alamos, 82Rb, -asymmetry (D. Vieira et al.) S.G. Crane et al., Phys. Rev. Lett. 86 (2001) 2967 - KVI-Groningen, Na, Ne, Mg, D-coefficient (K. Jungmann et al.) Ra, EDM experiment G.P. Berg et al., NIM B204 (2003) 526 2. Ion traps : - LPC-Caen, 6He, -correlation (O. Naviliat-Cuncic et al.) G. Ban et al., NIM A518 (2004) 712 - WITCH, Leuven-ISOLDE, 35Ar, -correlation (N. Severijns et al.) D. Beck et al., Nucl. Inst. Methods Phys. Res., A 503 (2003) 567 - CPT-trap Argonne, 14O, -correlation (G. Savard et al.) G. Savard et al., Nucl. Phys. A654 (1999) 961c - ISOLTRAP-CERN, mass for 0+ 0+ decays (K. Blaum et al.) Fundamental Symmetries & Interactions from N. Severijns
Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance Fundamental Symmetries & Interactions
P C T matter anti-matter time time mirror image from H.W. Wilschut The World according to Escher anti-particle particle e+ e- Fundamental Symmetries & Interactions
P C T matter anti-matter time time mirror image Time Reversal Violation can be measured at low energies from H.W. Wilschut The World according to Escher identical to start start anti-particle particle e+ e- Fundamental Symmetries & Interactions
Permanent Electric Dipole Moments Violate Discrete Fundmental Symmetries EDM violates: • Parity • Timereversal • CP- conservation (if CPT conservation assumed) Standardd Model values are tiny, hence: An observedEDM would be Sign of New Physics beyond Standard Theory Fundamental Symmetries & Interactions
EDMs – Where do they come from ?(are they just “painted“ to particles? Why different experiments? ) • electron intrinsic ? • quark intrinsic ? • muon second generation different ? • neutron/ proton from quark EDM ? property of strong interactions ? new interactions ? • deuteron basic nuclear forces CP violating? pion exchange ? • 6Li many body nuclear mechanism ? • heavy nuclei (e.g. Ra, Fr) enhancement by CP-odd nuclear forces, nuclear “shape“ • atoms can have large enhancement, sensitive to electron or nucleus EDMs • molecules large enhancement factors , sensitive to electron EDM • . . . Fundamental Symmetries & Interactions
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Origin ofEDMs Fundamental Symmetries & Interactions from C.P. Liu
Generic EDM Experiment Preparation of “pure“ J state Interaction with E - field Analysis of state Determination of Ensemble Spin average Polarization Spin Rotation electric dipole moment: D = x c-1 J Spin precession : e DJ hJ Example:D=10-24 e cm, E=100 kV/cm, J=1/2 e 15.2 mHz Fundamental Symmetries & Interactions
molecules: 1.610-27 • • 199Hg Radium potential Start TRIP de (SM) < 10-37 Some EDM Experiments compared New 2004 from muon g-2: d (muon) < 2.810-19 Fundamental Symmetries & Interactions after E.Hinds
How does a ring edm experiment work ? • Exploit huge motional electric fields for relativistic particles in high magnetic fields • stop g-2 precession • observe spin rotation • Concept works also for (certain) Nuclei: D , 6Li, 223Fr, . . N+ N+ N+ One needs for a successful experiment: • polarized, fast beam • magnetic storage ring • polarimeter For muons exploit decay asymmetry • One could use -decay • In general: any sensitive polarimeter works N+ Fundamental Symmetries & Interactions
Nucleus Spin J /N Reduced Anomaly a T 1/2 13957La 7/2 +2.789 -0.0305 12351Sb 7/2 2.550 -0.1215 13755Cs 7/2 +2.8413 0.0119 30y 22387Fr 3/2 +1.17 <0.02 22 min 63Li 1 +0.8220 -0.1779 21H 1 +0.8574 -0.1426 7532Ge 1/2 +0.510 +0.195 82.8 m Need Schiff moment calculations: Particularly in region of octupole deformed nuclei 15769Tm 1/2 +0.476 0.083 3.6 m Some Candidate Nuclei for EDM in Ring Searches Fundamental Symmetries & Interactions
Why the deuteron edm experiment “ “ C.P. Liu and R.G.E Timmermans, nucl-th/0408060, PRC accepted Fundamental Symmetries & Interactions
RF causes effective p/p < 10-5 Inject cc and ccw polarimeter Radius ? determined by many parameters , yet not all fully explored For details: F. Farley et al., Phys.Rev.Lett. 93, 052001,2004 Fundamental Symmetries & Interactions
Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance Fundamental Symmetries & Interactions
TimeReversalViolationin -decay: Correlation measurements • R andDtestboth Time Reversal Violation • D most potential • R scalar and tensor (EDM, a) • technique D measurements yield a, A, b, B Fundamental Symmetries & Interactions
Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance Fundamental Symmetries & Interactions
Lepton Magnetic Anomalies in CPT and Lorentz Non - Invariant Models | | - m m - 0 0 18 CPT tests K K = £ r 10 K m 0 K - - | g g | | a a | - + - + - - 3 12 e e e e = = × × £ × r 1.2 10 2 10 e g a avg avg ? ? Are they comparable - Which one is appropriate • often quoted: • K0- K0 mass difference (10-18) • e- - e+ g- factors (2* 10-12) • We need an interaction • with a finite strength! Use common ground, e.g. energies Þ generic CPT and Lorentz violating DIRAC equation 1 n μ μ μ μν μ μ ν ψ - - - - + + = (i γ D m a γ b γ γ H σ ic γ D id γ γ D ) 0 μ μ μ 5 μν μν μν 5 2 º ¶ - iD i qA m μ μ a , b break CPT a , b , c , d , H break Lorentz Invariance μ μ μ μ μν μν μν Leptons in External Magnetic Field - + l l l = - » - Δω ω ω 4b a a a 3 - + l l - | E E | Δω h spin up spin down a = » r l - 2 l m c E l spin up 57 Bluhm , Kostelecky, Russell, Phys. Rev. D ,3932 (1998) For g - 2 Experiments : - | a a | ω h = × c - + l l r l 2 a m c avg l Dehmelt, Mittleman,Van Dyck, Schwinberg, hep - ph/9906262 Þ - - 21 24 £ × £ × r 1.2 10 r 3.5 10 electron muon μ e : : CPT– Violation Lorentz Invariance Violation • What is best CPT test ? • New Ansatz (Kostelecky) • K 10-21 GeV • n 10-30 GeV • p 10-24 GeV • e 10-27 GeV • m 10-23GeV • Future: • Anti hydrogen 10-17 GeV Fundamental Symmetries & Interactions
CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2* 10-23 GeV Muon g-2: new interaction below 4* 10-22 GeV (CERN) 15 times better expected from BNL when analysis will be completed V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001) Fundamental Symmetries & Interactions
Properties of Known Basic Interactions • Electromagnetism and Fundamental Constants • QED, Lamb Shift • Muonium and Muon g-2 • Muonic Hydrogen and Proton Radius • Exotic Atoms • Does aQED vary with time? • QCD • Strong Interaction Shift • Scattering Lengths • Gravity • Hints of strings/Membranes? Fundamental Symmetries & Interactions