1 / 37

Research & Exploration in the Classroom: Increasing Investment in Science and Engineering Education for a Competitive Kn

This research explores the importance of investing in science and engineering education, aiming to increase the number of graduates in these fields and promote a competitive knowledge economy. It focuses on the impact of research and exploration in the classroom, emphasizing the need for active student engagement, improved research skills, problem-solving abilities, and increased student achievement.

xiomarat
Download Presentation

Research & Exploration in the Classroom: Increasing Investment in Science and Engineering Education for a Competitive Kn

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Research & Exploration in the classroom Koen Stulens Hasselt University

  2. Lissabon Declaration (2000) Increase Investment in Research + 15 % graduates in Science and Engineering European Competitive Knowledge Economy Gross Domestic Product 2000 1,9 % 2010 3 % + 700 K Researchers

  3. Annual mean decrease/increase of graduates Flanders Netherlands France Germany

  4. Researchers Generation Students Generation Students in Flanders Mathematics, Physics, Biology, Chemistry, Computer Science = 2,7

  5. Technology

  6. Technology

  7. Technology

  8. Technology Less Math? More Math! Different Approaches Gain a better insight in Math More Active Student Engagement Improve Research Skills Problem Solving Skills Reasoning Skills Improve Student Achievement

  9. Research & Exploration in the classroom Successive Integers Armando M. Martínez Cruz

  10. Successive Integers Choose four successive integers a, b, c and d. a=1, b=2, c=3, d=4 Make the sum a + b2 + c3. a + b2 + c3 = 1 + 4 + 27 = 32 Divide the sum by d. (a + b2 + c3) / d = 32 / 4 = 8 Conclusion? Divisible! Numerical Exploration

  11. Symbolical Generalization Successive Integers Choose four succussive integers a, b, c and d. a=1, b=2, c=3, d=4 Make the sum a + b2 + c3. a + b2 + c3 = 1 + 4 + 27 = 32 Divide the sum by d. (a + b2 + c3) / d = 32 / 4 = 8 Conclusion? Divisible! Symbolical Generalization

  12. Graphical Exploration Successive Integers Symbolical Generalization

  13. Successive Integers Graphical Exploration Conjecture And See

  14. Conjecture AndSee Plot a cubic function with three zeros a, b and c. Plot the tangent line in the midpoint between a and b. Conclusion?

  15. Research & Exploration in the classroom Optimization

  16. Optimization Classical Box Problem Geometrical exploration Numerical representation Graphical representation

  17. Optimization Classical Box Problem GRAPHICAL EXPLORATION &MODELLING

  18. V RESUD x x Optimization Classical Box Problem STATISTICAL EXPLORATION

  19. Optimization Classical Box Problem SYMBOLICAL EXPLORATION

  20. Optimization Angle of View

  21. Optimization Angle of View

  22. Optimization A numerical solution

  23. Research & Exploration in the classroom Code Theory

  24. 25 0 1 2 a b c d e f g h i j k l m n o p q r s t u v w x y z                           a b c d e f g h i j k l m n o p q r s t u v w x y z w i s k u n d e w w i i s s k k u u n n d d e e                         x y z 22 8 18 10 20 13 3 4 z z l l v v n n x x q q g g h h            23 24 25         25 11 21 13 23 16 6 7 + 3    26 27 28 0 1 2 Caesar code 100-44 BC BUT + 3 + 23 + ? - 3

  25. Modulo 9 + 5 = 2 9 + 5 = 14 9 + 5 =2 9 + 1 =10 9 + 2 =11 9 + 3 =12 9 + 4 =1 9 + 5 =2 + 2 + 1 + 4 + 3 + 5

  26. inString(Str1,Str2)-1-KA 26N prgmMOD (A modulo N  A) sub(Str1,A+1,1)Str2 Caesar code & TI-84 Plus DefinitionCharacters "ABCDEFGHIJKLMNOPQRSTUVWXYZ"Str1 Disp "MESSAGE" Input Str2 Disp "KEY" Input K Input Character & Key MStr2 20K inString(Str1,Str2)-1+KA 26N prgmMOD (A modulo N  A) sub(Str1,A+1,1)Str2 -14 Coding Decoding 32A 12 6A GStr2 M Output Code G Disp Str2

  27. Caesar code & TI-84 Plus Definition Characters "ABCDEFGHIJKLMNOPQRSTUVWXYZ"Str1 Disp "MESSAGE" Input Str2 Disp "KEY" Input K InputMessage& Key WISStr2 20K " "Str0 For(θ,1,length(Str2)) θ = 2 θ = 1 θ = 3 sub(Str2,θ,1)Str3 SStr3 IStr3 WStr3 inString(Str1,Str2)-1+KA 26N prgmMOD (A modulo N  A) sub(Str1,A+1,1)Str2 42A 28A 38A inString(Str1,Str3)-1+KA 26N prgmMOD (A modulo N  A) Str0+sub(Str1,A+1,1)Str0 Coding 2A 16A 12A Str0 + Q Str0 + M Str0 + C End sub(Str0,2,length(Str0)-1)Str0 Output Code Disp Str0 Disp Str2 QCM QC Q

  28. Str0

  29. PublicFunc SecretFunc M PublicFuncX X Y SecretFuncX M Public Key Systems C Condition SecretFuncX(PublicFuncX(M))=M

  30. PublicFunc SecretFunc M X Y M 1978 -Rivest,Shamir &Adleman RSA code C PublicFuncX Mdmod n Cemod n SecretFuncX Public  d= 7 en n = 55 Secret e= 23 en n = 55 ? ?

  31. Euler’s theorem If gcd(a,n) = 1 than aφ(n) ≡ 1 mod n RSA code Two Primes p = 5 & q = 11  n = pq = 55 en φ(n) = 40 Secret Key Determine e :1 < e< φ(n) = 40 and gcd(e,φ(n)) = 1 e= 23 & n = 55 Public key Determine d :1 < d< φ(n) = 40 and e.d = 1 mod φ(n) eφ(φ(n))≡ 1 mod φ(n) e.eφ(φ(n)) - 1≡ 1 mod φ(n) eφ(φ(n)) - 1= 2315 and 2315≡ 7 mod φ(n) d= 7 en n = 55

  32. RSA code M Public  d= 7 en n = 55 PublicFunc(x) = xdmod n e.d = 1 mod φ(n) Md SecretFunc(x) = xemod n Secret e= 23 en n = 55 (Md )e (Md )e ≡ Mde ≡ M1 + kφ(n) ≡ M.(Mφ(n))k ≡ M mod n

  33. RSA code

  34. Research & Exploration in the classroom Boyle’s Law

  35. Boyle’s Law Volume versus Pressure

  36. Research & Exploration in the classroom THE END

More Related