190 likes | 269 Views
Nira Dyn • Michael Floater • Kai Hormann. Dual 2n-Point Schemes. A Quadrilateral Rendering Primitive. Introduction. 1. 6. 1. 4. 4. Primal schemes one new vertex for each old vertex one new vertex for each old edge “keep old points, add edge midpoints” mask with odd length.
E N D
Nira Dyn • Michael Floater • Kai Hormann Dual 2n-Point Schemes A QuadrilateralRendering Primitive
Introduction 1 6 1 4 4 • Primal schemes • one new vertex for each old vertex • one new vertex for each old edge • “keep old points, add edge midpoints” • mask with odd length Dual 2n-Point Schemes
Introduction 1 3 3 1 • Dual schemes • one new edge for each old vertex • one new edge for each old edge • “add two edge-points, forget old points” • mask with even length Dual 2n-Point Schemes
Known Schemes 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 -1 1 0 6 15 9 16 20 15 9 6 0 1 -1 3 0 -25 0 150 256 150 0 -25 0 3 Primal B-Splines Dual linear quadratic cubic quartic quintic 2n-Point 4-point ? 6-point Dual 2n-Point Schemes
Primal 2n-Point Schemes -1 0 9 16 9 0 -1 3 0 -25 0 150 256 150 0 -25 0 3 interpolation cubic precision cubic sampling 1 1 1 1 interpolation 9/16 quintic precision quintic sampling -1/16 Dual 2n-Point Schemes
Dual 4-Point Scheme cubic sampling -7 105 35 -5 cubic precision cubic sampling -5 35 105 -7 1 1 1 1 105/128 105/128 35/128 35/128 -5/128 -7/128 -7/128 -5/128 Dual 2n-Point Schemes
Dual 4-Point Scheme -5 3 34 34 3 -5 -5 8 26 8 -5 -5 13 13 -5 -5 18 -5 ⇒ scheme is O(h4) and symbol contains (1+z)4 a(z) = cubic precision -5 -7 35 105 105 35 -7 -5 = ·(1+z) -5 -2 37 68 37 -2 -5 = ·(1+z)2 = ·(1+z)3 = ·(1+z)4 = ·(1+z)5 ⇒ scheme could be C4 and 4µspan {(x-j)} Dual 2n-Point Schemes
Smoothness Analysis -5 3 34 34 3 -5 -5 -5 -5 8 8 8 26 26 26 8 8 8 -5 -5 -5 25 -40 -170 24 103 272 -596 272 103 24 -170 -40 25 • scheme is notC3 a(z) = -5 -7 35 105 105 35 -7 -5 ⇒ C0 |■| = 72/128 < 1 |■| = 84/128 < 1 -5 -2 37 68 37 -2 -5 ⇒ C1 |■| = 42/64 < 1 |■| = 42/64 < 1 ⇒ C2 |■| = 36/32 > 1 2 × |■| = 336/1024 < 1 |■| = 336/1024 < 1 |■| = 256/1024 < 1 |■| = 936/1024 < 1 Dual 2n-Point Schemes
Subdivision Matrix -7 105 35 -5 0 0 -5 35 105 -7 0 0 -5 -7 35 105 105 35 -7 -5 0 -7 105 35 -5 0 0 -5 35 105 -7 0 0 0 -7 105 35 -5 0 0 -5 35 105 -7 • right and left eigenvector for 0: 0 = 1 1 = 1/2 2 = 1/4 S = /128 ⇒ 3 = 1/8 4 = 1/16 5 = 9/64 x0 = [1, 1, 1, 1, 1, 1] y0 = [1, -27, 218, 218, -27, 1]/384 Dual 2n-Point Schemes
Limit Function -5 -866 3509 43876 3509 -866 -5 49152 49152 49152 49152 49152 49152 49152 1 -27 218 218 -27 1 0 0 384 384 384 384 384 384 • support size 7 • quasi-interpolation Q = I+R = I+I-T [5, 866, -3509, 54428, -3509, 866, 5] / 49152 Dual 2n-Point Schemes
Limit Function ′ ″ Dual 2n-Point Schemes Dual 2n-Point Schemes
Dual 4-Point Scheme • Summary • reproduces cubic polynomials • approximation order O(h4) • C2 continuous • support size 7 • contains quartic polynomials Dual 2n-Point Schemes
2n-Point-Schemes 1 2 1 -5 -7 35 105 105 35 -7 -5 -1 0 9 16 9 0 -1 1 3 3 1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 3 0 -25 0 150 256 150 0 -25 0 3 Primal 2n-Point Dual 2-Point linear 4-Point cubic 6-Point quintic ∶ ∶ Dual 2n-Point Schemes
Dual 4-Point Scheme Dual 2n-Point Schemes
Dual 6-Point Scheme Dual 2n-Point Schemes
Dual 8-Point Scheme Dual 2n-Point Schemes
Examples Dual 2n-Point Schemes
Examples Dual 2n-Point Schemes
Thank You for Your Attention Dual 2n-Point Schemes A QuadrilateralRendering Primitive