1 / 45

Normal Dağılımlılık

EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. Normal Dağılımlılık. b tahminleri için uygulanan testlerin geçerliliği u i ’nin normal dağılmasına bağlıdır.

yeriel
Download Presentation

Normal Dağılımlılık

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. Normal Dağılımlılık • b tahminleri için uygulanan testlerin geçerliliği ui’nin normal dağılmasına bağlıdır. • Çünkü ui normal dağılıyorsa, EKK b1 ve b2’nin tahmincileri de normal dağılır. • Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.

  2. - + E(ui)=0 ui değerleri

  3. c2 uyum iyiliği testi 1.Aşama H0: ui’ler normal dağılımlıdır H1ui’ler normal dağılımlı değildir. 2.Aşama c2a,sd =? a = ? sd=? 3.Aşama 4.Aşama c2hes> c2a,sd H0reddedilebilir

  4. c2 uyum iyiliği testi 0.34 0.34 0.14 0.14 0.02 0.02 E(u)= 0 %68 -s +s %95.5 -2s %99.7 +2s -3s +3s

  5. c2 uyum iyiliği testi s = 12,138 3.4 4 3.4 7.0545 4.7091 -3.6364 11.0182 -14.3273 -17.6727 4.9818 -3.3636 -7.7091 18.9455 3 1.4 0.2 1.4 1 2 0 0 0.2 -36.414 -24.276 -12.138 +12.138 +24.276 +36.414

  6. c2 uyum iyiliği testi = 0.9244

  7. 1.Aşama H0: ui’ler normal dağılımlıdır H1: ui’ler normal dağılımlı değildir Jarque-Bera Normallik Testi c2a,sd =? 2.Aşama Sd=? a = ? 3.Aşama JB > c2a,sd 4.Aşama H0 hipotezi reddedilebilir

  8. Jarque-Bera Normallik Testi

  9. e4 e e2 e3 Jarque-Bera Normallik Testi 351.07 104.43 -48.09 1337.62 -2940.99 -5519.61 123.64 -38.06 -458.15 6800.15 2476.65 491.76 174.86 14738.14 42136.40 97546.48 615.95 128.00 3531.95 128832.16 49.77 22.18 13.22 121.40 205.27 312.32 24.82 11.31 59.43 358.93 7.0545 4.7091 -3.6364 11.0182 -14.3273 -17.6727 4.9818 -3.3636 -7.7091 18.9455 Se= 0 Se2 = 1178.66 Se3 = -287.99 Se4 = 290672.35

  10. =117.866 = s2 =-28.799 Jarque-Bera Normallik Testi =29067.235 =-0.023 = 2.09

  11. 1.Aşama H0: ui’ler normal dağılımlıdır H1: ui’ler normal dağılımlı değildir Jarque-Bera Normallik Testi 2.Aşama a = 0.05 Sd=2 c2a,sd =5.991 3.Aşama 0.3459 4.Aşama JB < c2a,sd H0 hipotezi reddedilemez.

  12. ÇOKLU DOĞRUSAL BAĞLANTI 12

  13. ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlantı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır. 1. parametreler belirlenemez hale gelir. Her bir parametre için ayrı ayrı sayısal değerler bulmak zorlaşır. ise bu değişkenlere ortogonal değişkenler denir ve katsayıların 2. tahmininde çoklu doğrusal bağlantı açısından hiçbir sorun yoktur. ise tam çoklu doğrusal bağlantı yoktur. 3.

  14. X3 X2 Çoklu Doğrusal Bağlantı rX2X3= 1 Tam Çoklu Doğrusal Bağlantı

  15. ÇOKLU DOĞRUSALLIĞIN NEDENLERİ • İktisadi değişkenlerin zaman içerisinde birlikte değişme eğiliminde olmaları • Bazı açıklayıcı değişkenlerin gecikmeli değerlerinin ilişkide ayrı birer etmen olarak kullanılmasıdır. • Genellikle zaman serilerinde görülür.

  16. Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar • Regresyon Katsayılarının Değerleri Belirsiz Olur, • Regresyon Katsayılarının Varyansları Büyür, • t-istatistikleri azalır, • Güven Aralıkları Büyür, • R2 Olduğundan Büyük Çıkar, • Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,

  17. ÇOKLU DOĞRUSALLIĞIN DOĞURDUĞU SONUÇLAR a) Katsayıları tahminleri belirlenemez. b)Tahminlerin standart hataları sonsuz büyük olur.

  18. İspat a)

  19. İspat b) X2 yerine kX1 konursa

  20. Değişkenler Model A Model B Model C Sabit -626.24 (-5.98) -796.07 (-5.91) 7.29 (0.06) 7.35 (22.16) 27.58 (9.58) Yas 53.45 (18.27) Km -151.15 (-7.06) 55 s.d. 55 54 0.897 0.856 0.946 Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri Düzeltilmiş-R2

  21. Ev Talebi Model Tahminleri Değişkenler Model A Model B Model C Sabit 687.90 (1.80) -1315.75 (-0.27) -3812.93 (-2.40) Faiz -169.66 (-3.87) -184.75 (-3.18) -198.40 (-3.87) 14.90 (0.41) Nüfus 33.82 (3.61) GSMH 0.91 (3.64) 0.52 (0.54) Düzeltilmiş-R2 19 s.d. 20 20 0.371 0.375 0.348 r(Nüfus,faiz)= 0.91 r(GSMH,Nüfus)=0.99 r(GSMH,faiz)=0.88

  22. ÇOKLU DOĞRUSAL BAĞLANTININ VARLIĞININ BELİRLENMESİ Varyans Büyütme Modeli Yardımcı Regresyon Modelleri için F testi Klein – Kriteri Şartlı Sayı Kriteri Theil-m Ölçüsü

  23. ÇOKLU DOĞRUSAL BAĞLANTININ BELİRLENMESİ 1.Varyans Büyütme Modeli: • Varyans büyütme faktörü; parametre tahminlerinin ve varyanslarının çoklu doğrusal bağlantı nedeni ile gerçek değerlerinden ne derece uzaklaştığını gösterir. VIF kriteri

  24. Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri 5 Çoklu doğrusal bağlantı önemlidir. . .

  25. Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri 5 Çoklu doğrusal bağlantı önemlisizdir. . .

  26. ÖRNEK: 1990-2002 dönemi için Türkiye’nin GSMH(milyar TL), Para Arzı(PA, milyar TL), Dış Ticaret Açığı (DT, milyar TL) ve Toptan Eşya Fiyat Endeksi (TEFE,1987=100) değerleri verilmiştir. Varyans Büyütme Faktörü ile çoklu doğrusal bağlantı sorununu araştırınız.

  27. Bu verilerden elde edilen model; Bağımsız değişkenleri sırası ile bağımlı değişken yaparak diğer bağımsız değişkenlerle regresyon modeli tahmin edilir.  5 çoklu doğrusal bağlılık önemlidir  5 çoklu doğrusal bağlılık önemlidir  5 çoklu doğrusal bağlılık önemlidir

  28. 2.Yardımcı Regresyon Modelleri için F testi • Bu yöntemde varyans büyütme faktöründe hesapladığımız belirlilik katsayılarından hesaplama yapılır. • Sırası ile incelenen modelde yer alan her bir bağımsız değişken ayrı ayrı bağımlı değişken olmak üzere kalan diğer bağımsız değişkenlerle regresyona tabi tutulur. • Oluşturulan söz konusu yeni regresyon modellerine yardımcı regresyon modelleri denir. • Oluşturulan yardımcı regresyon modellerinin belirlilik katsayıları hesaplanarak F test istatistiği hesaplanır. • Bu yöntem için temel hipotez bağımsız değişkenler arasında ilişki yoktur şeklindedir.

  29. . . Test istatistiği yukarıdaki her denklem için hesaplanır. k: incelenen modelin tahmin edilen katsayı sayısı

  30. UYGULAMA: Aynı örnek için yardımcı regresyon modeli ile çoklu doğrusal bağlantı sorununu inceleyiniz. 1.Aşama: H0: Çoklu doğrusal bağlantı yoktur. H1: Çoklu doğrusal bağlantı vardır. 2.Aşama: F0.05,(k-2),(n-k+1) =4.10 3.Aşama: 4.Aşama: Fhes > Ftab H0 reddedilir.

  31. Fhes > Ftab H0 reddedilir. Fhes > Ftab H0 reddedilir.

  32. Klein – Kriteri: • Klein, bağımsız değişkenler arasındaki basit korelasyon katsayılarının kareleri modelin genel belirlilik katsayısından büyük olmadığı sürece çoklu doğrusallığın zararlı olmadığını savunmaktadır. Çoklu doğrusal bağlılık zararlıdır. • Klein yukarıdaki kriterine göre küçük bir çoklu doğrusal bağlantı bile parametre tahminlerinde anlamsızlığa yol açabilir.

  33. Bu durumda yardımcı regresyon modelleri için F testinde açıklandığı gibi, yardımcı regresyon modelleri tahmin edilir ve bunlardan elde edilecek çoklu belirlilik katsayısı ile karşılaştırılarak karar verilebilir.

  34. UYGULAMA: Aynı örnek için Klein kriteri ile çoklu doğrusal bağlantı sorununu inceleyiniz. Elde edilen yardımcı regresyon modelleri 1. Çoklu doğrusal bağlantı zararlı değildir. 2. Çoklu doğrusal bağlantı zararlı değildir. 3. Çoklu doğrusal bağlantı zararlı değildir.

  35. Şartlı Sayı Kriteri: • Bu kriterin hesaplanması için bu (X’X) matrisinin birim köklerinden (özdeğerlerinden) yararlanılır. • (X’X) matrisinin en büyük birim kökü (1) ve en küçük birim kökü (2) ise şartlı sayı KARAR: 1. Çoklu doğrusal bağlantı orta derecedir. Çoklu doğrusal bağlantı yüksek derecedir. 2.

  36. Örnek: 12 ailenin aylık gelirleri (Y), gıda harcamaları (X2) ve fert sayısı (X3) verileri aşağıdaki gibidir:

  37. Ortalamadan farklar ile bağımsız değişkenler katsayı matrisi;

  38. KARAR: Çoklu doğrusal bağlantı düşük derecededir.

  39. Theil-m Ölçüsü • Bağımlı değişkenle bağımsız değişkenler arasındaki ilişkiye dayanan bir ölçüdür. • Bu ölçü için, modelin genel belirlilik katsayısı ile modelden sırası ile bir tane bağımsız değişkenin çıkarılması ile elde edilecek modellerin çoklu belirlilik katsayıları kullanılır. • Modelde yer alan tüm bağımsız değişkenler sırası ile modelden çıkarılarak Regresyon modelleri tahmin edilir ve her model için çoklu belirlilik katsayıları elde edilir.

  40. Theil-m Ölçüsü • olarak hesaplanır. Burada bağımsız değişkenlerden biri çıkartıldıktan sonra bağımlı değişken ile diğer bağımsız değişkenlerin regresyonu sonucunda tahmin edilen çoklu belirlilik katsayısını ifade eder. • Theil-m ölçüsü çoklu doğrusal bağlılığın önemli olup olmadığı hakkında bilgi vermediğinden, varyans büyütme faktörü ile şartlı sayı daha çok kullanılan ve daha yarar sağlayan kriterlerdir.

  41. Theil-m Ölçüsü • “m” ölçüsü her regresyon için ayrı ayrı hesaplanmayan genel bir ölçüdür. • m ölçüsü negatif çıkabileceği gibi çok yüksek pozitif değer de olabilmektedir. • Hesaplanan m ölçüsü sıfıra eşitse bağımsız değişkenler ilişkisizdir. bağımsız değişkenler ilişkisizdir m = 0

  42. Örnek: • Slayt 11 de incelediğimiz model için Theil-m ölçüsünü uygulayalım. • Yardımcı regresyon modellerini oluşturalım. • m sıfıra yakın bir değer değildir, çoklu doğrusal bağlılık söz konusudur.

  43. Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b1 + b2 X2 + b3 X3 +b4 X4+ u b3 = 0.2b2 Y = b1 + b2 X2 + 0.2b2 X3 +b4 X4+ u Y = b1 + b2 (X2 + 0.2 X3 )+b4 X4+ u Y = b1 + b2 X*+ b4 X4+ u

  44. Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b1 + b2 lnPtA + b3 lnIt +b4 lnPtB+ u lnY - b3 lnIt = b1 + b2 lnPtA +b4 lnPtB+ u lnY* = b1 + b2 lnPtA +b4 lnPtB+ u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.

  45. Km = 4.191 + 0.134 Yaş (8.74) (88.11) Bakım = 7.29 + 27.58 Yaş- 151.15 (4.191 + 0.134 Yaş = -626,18 + 7.33Yaş

More Related