1 / 43

Fuzzy Clustering with Principal C omponent Analysis

Fuzzy Clustering with Principal C omponent Analysis. Similarity Fuzzy Cluster(SFC). Layer 1. 計算單一維度與各群聚間的單維高斯歸屬度 每一 節點表示為一群 每 一群裡的子節點為維度 (n) 個數. Layer 2. Layer 3. 競爭 式運算節點. Layer 4. Hard limit function. SFC 範例. Cluster Merge. 減少多餘的 cluster. Merge 範例. 為何需要 PCA.

Download Presentation

Fuzzy Clustering with Principal C omponent Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fuzzy Clustering with Principal Component Analysis

  2. Similarity Fuzzy Cluster(SFC)

  3. Layer 1 • 計算單一維度與各群聚間的單維高斯歸屬度 • 每一節點表示為一群 • 每一群裡的子節點為維度(n)個數

  4. Layer 2

  5. Layer 3 • 競爭式運算節點

  6. Layer 4 • Hard limit function

  7. SFC範例

  8. Cluster Merge • 減少多餘的cluster

  9. Merge 範例

  10. 為何需要PCA

  11. Principal Component Analysis • 將 input space 的資料經由transformation matrix W 投影到另一個空間系統 • 資料群中變化量最大的方向即為第一主成份方向,其次為第二主成份方向,以此類推 • 各個主成份方向之間為正交

  12. PC-SFC

  13. Layer 1

  14. Layer 5

  15. PC-SFC範例

  16. Online cluster merge • 降低時間 • |b|=0 新增cluster • |b|=1 找出和資料點最相似的cluster

  17. |b| • 表示有兩個以上的cluster和資料點相似 • 將和其他可能相似的 cluster

  18. Re-assign

  19. 實驗架構 1.SFC-PC-RE-M 2.PC-SFC-RE-M 3.PC-OM-SFC_RE

  20. 實驗一

  21. 1.當cluster資料點越多表示該cluster中心越為穩定1.當cluster資料點越多表示該cluster中心越為穩定 2.初始標準差越大,分群越少

  22. 實驗二

  23. 實驗三

More Related