1 / 40

Broadband FFT Spectrometer ARGOS

Broadband FFT Spectrometer ARGOS. First results. ETHZ Institute of Astronomy Christian Monstein Scheuchzerstrasse 7 CH-8092 Zürich monstein@astro.phys.ethz.ch. ARGOS-GG.ppt, 14.04.2005. Content. Specifications, block diagrams FPGA, VHDL, resource table

Download Presentation

Broadband FFT Spectrometer ARGOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Broadband FFT Spectrometer ARGOS First results ETHZ Institute of Astronomy Christian Monstein Scheuchzerstrasse 7 CH-8092 Zürich monstein@astro.phys.ethz.ch ARGOS-GG.ppt, 14.04.2005

  2. Content • Specifications, block diagrams • FPGA, VHDL, resource table • Schedule, cost, additional information • KOSMA block diagram, measurement methods • Gornergrat impressions • Measurements in the laboratory • Spectrum results • Software, GUI • RF-overview Gornergrat 3100m, Bleien 420m and Diavolezza 3000m • Conclusions FPGA = Field Programmable Gata Array VHDL = Very High Speed Integrated Circuit Description Language KOSMA = Kölner Observatorium für SubMillimeter Astronomie GUI = Graphical User Interface RF = Radio Frequency

  3. Specifications PCI = Peripheral Component Interconnect (local bus standard) AD = Analog Digital Converter

  4. Block diagram AC240 Opt. DRAM Opt. SRAM Digital processing Unit FPGA Xilinx Virtex-2 pro XC2VP70 Additional digital l/O from/to telescope Analog output 2 x 128 bits Δt=0.5nsec Preamp 1GHz Demux 1 8 bits x 16 ADC 1 1Gs/s 8 bit Ch1 Cross Point Switch Preamp 1GHz Demux 2 8 bits x 16 ADC 2 1Gs/s 8 bit Ch2 Trigger PCI Bus Time Base Controller PCI Interface Ext trigger Ext clock

  5. PCB AC240 with FPGA

  6. Block diagram AC240 1 Gs/s complex 16 k FFT Pipeline complex input complex output Post Processing Unit even Σ 2 Gs/s real Redundant data j odd 1 Gs/s complex 1 Gs/s complex 2 x 1 Gs/s real

  7. 32K FFT with 2Gs/sec throughput 125MHz 125MHz

  8. Overview of AC240 FDK core

  9. VHDL design with MENTOR tool Design Entry : HDL Desinger 2004.1a Simulation    : ModelSim 5.8c Synthese     : Precision RTL 2004.a1 Place & Route: Xilinx ISE 6.2i

  10. Utilization FPGA resources • No use of internal Power-PC (gray area) foreseen • Purple = input structure and programmable window • Yellow = pipeline #1, green = pipeline #2 • Violet = output structure • horizontal structure = Block-RAM and multipliers

  11. Xilinx FPGA Virtex II XC2VP70-6 resources • Slices 29‘247 88.4% • Flip Flops 38‘272 57.2% • Block-RAM 300 91.5% • Multiplier 192 58.5% • fmax 138 MHz (required: 125 MHz)

  12. Schedule • Planned In fact • Start of KTI-project: 2003-11-01 2004-11-01 • Decision system architecture: 2004-03-18 2004-03-18 • Preliminary tests of 1st implementation: 2004-08-30 2004-09-30 • System ready for Radio Astronomy: 2004-12-20 2005-03-18 • Scientific analysis, fist results: 2005-03-07 2005-04-05 • End of project, closing report to KTI: 2005-04-02 2005-05-31

  13. Costs Acqiris sampler 2Gs/s AC240 20’000 Euro Option FFT (Bitfile) 4’000 Euro PCI-interface IC414 1’400 Euro Blanking panel XB200 100 Euro 3-slot crate CC103 2’500 Euro Driver (Win/Linux) free of charge 0 Euro Standard-PC with one free PCI-slot 2’000 Euro FFT – spectrometer 30’000 Euro Some statistics to remember….: 1,8 Euro per FFT-channel or 33KHz bandwidth for every single Euro Actual prices to be negotiated with Acqiris!

  14. Additional information • Project management & tests: ETH Zurich: • Prof. A. O. Benz • - Chr. Monstein • - Hansueli Meyer • Algorithms: FHS (Fachhochschule Solothurn): • - Bruno Stuber • VHDL design: ZMA (Zentrum für Mikroelektronik Aargau): • Prof. K. Schenk • D. Zardet • Industry: Acqiris company Geneva: • - Dr. V. Hungerbühler et. al. Additional information: http://www.astro.phys.ethz.ch/instrument/argos/argos_nf.html http://www.acqiris.com

  15. Block diagram KOSMA AOS LRS 1000MHz/1450 KOSMA DSP KOSMA control Positioning unit AOS MRS 300MHz/1800 Receivers 200…900GHz AOS HRS 59MHz/2048 Local oscillator unit IF unit ETH-FFT 1GHz/16384 Digital I/O IF = 350MHz±150MHz -Data ready -Wobbler control PC Win XP Argos,FTP, VNC Intranet To Internet Laptop LINUX IDL PC Win XP Office, VNC Printers

  16. KOSMA measurement methods

  17. KOSMA 3m-parabola

  18. KOSMA Control room Ilona Miller

  19. KOSMA clock generation

  20. ARGOS, IF-units & AOS

  21. Allan time hot noise source Data: 3.6 GByte in total, (extraction of Saturday, 02.04.2005. Used for analysis 08:15 - 21:00) FPGA: 52.8°C ±0.2K Place : Library SEC Range: 50mVpp [sec]

  22. Channel test 10MHz comb

  23. Receiver temperature 230GHz Birdies < 200MHz and > 500MHz are out of KOSMA-IF (red shaded area)!

  24. DR21K 12CO 2→1 Some single spectra 15sec each ↑ = source - reference ↓ = reference - source

  25. DR21K 12CO 2→1 Ti = 90sec BW = 61KHz 230.537994GHz Ti = 179sec BW = 47KHz

  26. DR21K 12CO 3→2 Channel width 60KHz Ti = 200sec Channel width 560KHz Ti = 400sec

  27. ORION A 12CO 2→1 Channel width 240KHz Ti = 10sec Channel width 560KHz Ti = 20sec

  28. AFGL 2591 12CO 3→2 Channel width 240KHz Ti = 160sec Channel width 560KHz Ti = 320sec

  29. IRC 10216 12CO 2→1 Observation 3h SNR with BW=240KHz, Ti=3420sec Ta with BW=560KHz, Ti=5700sec

  30. Sun in absorption 12CO 3→2

  31. 12CO 2→1 Line

  32. Dual beam switched mode Tamax≈ 1Kelvin

  33. Frequency switching 12CO 2→1 Fo = 230’537.994MHz ± 10.5MHz

  34. Ozone in the atmosphere AOS saturated

  35. ARGOS-GUI Windows XP

  36. ARGOS on-line graphics Sky noise Zero noise The ADC-range has to be adjusted such that peak amplitudes don’t strike maximum values but, the ADC should be set to maximum gain while observing a hot load. Comb noise

  37. Base band overviews DC-1GHz

  38. Time- & frequency domain Gornergrat 3100m asl 10sec base band dc-1GHz 30sec IF (230GHz - RX)

  39. Time- & frequency domain duringVP Diavolezza 3000m asl Radar pulse 1028...1030MHz using an L-band down converter Echo of ionosphere sonder 16…30Mhz while doing Jupiter/Io observations.

  40. Conclusions

More Related