580 likes | 744 Views
27-Sep-12. 2. In this lecture, we find the recurrence relation satisfied by the Legendre Polynomials, show that the nth degree Legendre Polynomial has n distinct real roots all of which lie between -1 and 1. We also state the generating function for these Polynomials and define the Fourier-Legendr
E N D
1. 27-Sep-12 1
2. 27-Sep-12 2
3. 27-Sep-12 3
4. 27-Sep-12 4
5. 27-Sep-12 5
6. 27-Sep-12 6
7. 27-Sep-12 7
8. 27-Sep-12 8
9. 27-Sep-12 9
10. 27-Sep-12 10
11. 27-Sep-12 11
12. 27-Sep-12 12
13. 27-Sep-12 13
14. 27-Sep-12 14
15. 27-Sep-12 15
16. 27-Sep-12 16
17. 27-Sep-12 17
18. 27-Sep-12 18
19. 27-Sep-12 19
20. 27-Sep-12 20
21. 27-Sep-12 21
22. 27-Sep-12 22
23. 27-Sep-12 23
24. 27-Sep-12 24
25. 27-Sep-12 25
26. 27-Sep-12 26
27. 27-Sep-12 27
28. 27-Sep-12 28
29. 27-Sep-12 29
30. 27-Sep-12 30
31. 27-Sep-12 31
32. 27-Sep-12 32
33. 27-Sep-12 33
34. 27-Sep-12 34
35. 27-Sep-12 35
36. 27-Sep-12 36
37. 27-Sep-12 37
38. 27-Sep-12 38
39. 27-Sep-12 39
40. 27-Sep-12 40
41. 27-Sep-12 41
42. 27-Sep-12 42
43. 27-Sep-12 43
44. 27-Sep-12 44
45. 27-Sep-12 45
46. 27-Sep-12 46
47. 27-Sep-12 47
48. 27-Sep-12 48
49. 27-Sep-12 49
50. 27-Sep-12 50
51. 27-Sep-12 51
52. 27-Sep-12 52
53. 27-Sep-12 53
54. 27-Sep-12 54
55. 27-Sep-12 55
56. 27-Sep-12 56
57. 27-Sep-12 57
58. 27-Sep-12 58