570 likes | 660 Views
Helping online communities to semantically enrich folksonomies. Freddy Limpens , Fabien Gandon Edelweiss, INRIA Sophia Antipolis { freddy.limpens , fabien.gandon}@inria.fr Michel Buffa Kewi , I3S, Univerité Nice-Sophia Antipolis. Edelweiss. ISICIL, mai 2010. How to turn
E N D
Helping online communities to semantically enrich folksonomies Freddy Limpens, Fabien Gandon Edelweiss, INRIA Sophia Antipolis {freddy.limpens,fabien.gandon}@inria.fr Michel Buffa Kewi, I3S, UniveritéNice-Sophia Antipolis Edelweiss ISICIL, mai 2010
How to turn folksonomies ... ? Energy pollutant related related pollution ...into comprehensible topic structures ? has narrower Soil pollutions
… and by collecting all user's expertise into the process
Our approach Integrate usage-analysis for a tailored solution Supporting diverging points of view Automaticprocessings + Human expertise through user-friendly interfaces
Concrete scenario Archivists centralize + tag Experts produce docs + tag Public audience read + tag
Supporting diverging points of view skos:related pollution car
Supporting diverging points of view skos:related pollution car disagrees agrees John Paul
Supporting diverging points of view tagSemanticStatement (named graph) skos:related pollution car hasApproved hasRejected Paul John
Folksonomy enrichment life-cycle Flat folksonomy User-centric structuring Automatic processing Detectconflicts ADDING TAGS Global structuring Structuredfolksonomy
1. String-based metrics pollution pollution pollution pollution pollution Soil pollutions pollution pollutant
Evaluation of 30 edit distances Combining the best metrics Needs complement ! 1. String-based metrics
1. String-based metrics EvaluatedagainstAdemeexpert's point of view
Result on full dataset Related 55,10% Broader/narrower 32% CloseMatch 12,82%
Result on full dataset Node size ↔ InDegree ◉ tags (delicious + thesenet) ◉mot-cléssvic
Result on full dataset Node size ↔ InDegree ◉ tags (delicious + thesenet) ◉mot-cléssvic
2. Tri-partite structure offolksonomies • Association via : • Users • tags Fig. Markines et al. (2009)
2. Tri-partite structure of folksonomies Tag-based association : => gives "related" relations
2. Tri-partite structure of folksonomies User-based association (Mika) : environnement agriculture U3 U1 U6 U2 U4 => gives "subsumption" relations
Exampleresult on Deliciousdataset: Arrowsmean "has broader" thickness ≈ weight
TheseNetdataset: Arrowsmean "has broader" thickness ≈ weight
Folksonomy enrichment life-cycle Flat folksonomy User-centric structuring Automatic processing Detectconflicts ADDING TAGS Global structuring Structuredfolksonomy
Embedding structuring tasks within everyday activity (searching e.g)
Embedding structuring tasks within everyday activity (searching e.g)
Folksonomy enrichment life-cycle Flat folksonomy User-centric structuring Automatic processing Detectconflicts ADDING TAGS Global structuring Structuredfolksonomy
Conflict detection narrower pollution environment broader
Conflict detection narrower pollution environment broader Using rules e.g: IFnum(narrower)/num(broader) ≥ c THENnarrowerwins ELSE 'more generic' wins
Conflict detection narrower pollution environment related broader related more generic more generic narrower broader
Folksonomy enrichment life-cycle Flat folksonomy User-centric structuring Automatic processing Detectconflicts ADDING TAGS Global structuring Structuredfolksonomy
Global structuring by Referent related pollution environment hasApproved ReferentUser
Folksonomy enrichment life-cycle Flat folksonomy User-centric structuring Automatic processing Detectconflicts ADDING TAGS Global structuring Structuredfolksonomy
environment environment environment narrower pollutants pollution pollution pollution pollutants Referent Paul John narrower related narrower environment narrower pollution pollutants
Take away message (conclusion)
What we do : Help communities structure their tags
Our contributions: Usagesanalysis Automatic processing of tags Tag structuring embedded in every-day tools Supporting multi-points of view
Future work Interfaces : to capture user-centric contributions Global administrations (Referent User) Tag searching Real-scaleexperimentation Mappingbetweenknowledgerepresentation(Gemet thesaurus – Tags – CADIC e.g.) Moving to othersocio-structuralmodels
Thank you ! freddy.limpens@inria.fr http://www-sop.inria.fr/members/Freddy.Limpens/ http://isicil.inria.fr