1 / 27

NEPARAMETRIJSKI TESTOVI

NEPARAMETRIJSKI TESTOVI. 2. M: 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 8, 9, 11, 13, 14, 18 8,5 2 Z: 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 11, 11. 3,5. 2,5. 5,5. Da li ovi rezultati ukazuju na trend u koncentraciji hormona?. NEPARAMETRIJSKA ANOVA

zada
Download Presentation

NEPARAMETRIJSKI TESTOVI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NEPARAMETRIJSKI TESTOVI

  2. 2 M: 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 8, 9, 11, 13, 14, 18 8,5 2 Z: 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 11, 11 3,5 2,5 5,5

  3. Da li ovi rezultati ukazuju na trend u koncentraciji hormona?

  4. NEPARAMETRIJSKA ANOVA • Jednofaktorska (više nezavisnih uzoraka): • - (prošireni medijana-test) • - Kruskal-Wallis-ov test: koristi rangove umesto • “sirovih” podataka; “snažniji” od proširenog • medijana-testa •  χ2 • Više zavisnih uzoraka: • - Friedman-ov test

  5. Theil-ova potpunametoda: • Nagib se računa kao medijana nagiba za svaki • par tačaka (1 ≤ i, j ≤ n) • odsečak isto kao kod nepotpune metode • više računanja • Prednosti Theil-ovih metoda: • ne pretpostavljaju greške samo u y-vrednostima • ne pretpostavljaju normalnu raspodelu grešaka • neosetljive na ekstremne vrednosti (outliers) • A comparison of best fit lines for data with outliers • (Glaister, P. Int. J. Math. Educ. Sci. Technol. 2005, 36, 110–117)

  6. Kolmogorov-Smirnov-ljev test • Za testiranje normalnosti raspodele • Poredi krivu kumulativne frekvencije sa krivom pretpostavljene raspodele • Podaci se transformišu u standardnu formu (izračunavaju se z-vrednosti)

More Related