450 likes | 558 Views
Selection does occur in NT. Most variation has little effect on fitness. Testing the Neutral theory. Synonymous vs Nonsynonymous substitutions Microadaptation within protein coding genes Types of selection “positive”. Evolutionary change in Nucleotide sequence. Basic Process
E N D
Selection does occur in NT • Most variation has little effect on fitness
Testing the Neutral theory • Synonymous vs Nonsynonymous substitutions • Microadaptation within protein coding genes • Types of selection “positive”
Evolutionary change in Nucleotide sequence • Basic Process • Estimating rates of substitution • Reconstructing organism phylogeny
Compare two or more sequences descended from a common ancestor
Purines Pyrimidines A G C T
Models of Nucleotide Sub. • Jukes-Cantor • assumes that all nucleotides are present with equal frequencies • assumes equal probabilities for all possible nucleotide substitutions • Kimura 2-parameter • assumes that all nucleotides are present with equal frequencies • assumes Ti () and Tv (β) probabilities are different
3 Sub. Types Tv, 2 Ti Equal base frequencies 3 Sub. Types 2 Tv classes, Ti 2 Sub. Types Tv vs. Ti Equal base frequencies 2 Sub. Types Tv vs. Ti Single sub. type Equal base frequencies Single sub. type GTR TrN SYM K3ST HKY85 F84 F81 K2P JC
Jukes and Cantor (1969) • If you have an A at site i it will change to G, T, C with equal probability • Thus the rate of substitution per unit time is 3. • The rate of sub. in each of the 3 possible directions of change is
Jukes and Cantor (1969) cont. • What is the prob. that this site is occupied by A at time t? PA(t) • The prob. that this site is occupied by A at time 0 isPA(0)=1and still having A time 1 PA(1)= 1-3
Jukes and Cantor (1969) cont. A A T=0 No sub. sub. Not A A T=1 No sub. sub. A A T=2 The prob. of A at time 2 is PA(2) = (1-3) PA(1)+[1-PA(1)]
Purines Pyrimidines Kimura 2 Parameter A G β β C T
Kimura Scenario’s A A A A T=0 No sub. Ti. Tv. Tv. T=1 G A C T No sub. Ti. Tv. Tv. T=2 A A A A
3 Sub. Types Tv, 2 Ti Equal base frequencies 3 Sub. Types 2 Tv classes, Ti 2 Sub. Types Tv vs. Ti Equal base frequencies 2 Sub. Types Tv vs. Ti Single sub. type Equal base frequencies Single sub. type GTR TrN SYM K3ST HKY85 F84 F81 K2P JC
Substitutions Time 0 Outgroup) ATGTCAGGGACTCAGATCGAATGGGATCTAG Taxon 1) .....C......T.................. Taxon 2) .....G......T........C......... Taxon 3) .....C...........A............. Taxon 4) .....G...........A........G....
Substitutions Time 1 Outgroup) ATGTCAGGGACTCAGATCGAATGGGATCTAG Taxon 1) .....A......T.................. Taxon 2) .....G......G........C......... Taxon 3) .....G...........A............. Taxon 4) .....G...........A........G....
Substitutions Time 2 Outgroup) ATGTCAGGGACTCAGATCGAATGGGATCTAG Taxon 1) .....G......T.................. Taxon 2) .....G......T........C......... Taxon 3) .....G...........A............. Taxon 4) .....G...........A........G.... Multiple Substitutions at the same site
Hamming Distance or P=n/N*100 Outgroup) ATGTCAGGGACTCAGATCGAATGGGATCTAG Taxon 1) .....C......T.................. Taxon 2) .....G......T........C......... Taxon 3) .....C...........A............. Taxon 4) .....G...........A........G.... N=31 P=2/31*100=6.45%
Substitutions Time 2 Outgroup) ATGTCAGGGACTCAGATCGAATGGGATCTAG Taxon 1) .....G......T.................. Taxon 2) .....G......T........C......... Taxon 3) .....G...........A............. Taxon 4) .....G...........A........G.... A→C→G P=2/31*100=6.45%
Nucleotide diff. between seq. Prob. at time t = PAA(t) For both seq. the prob. at time t = P2AA(t)
I(t) = Prob. That the nucleotide at a given site at time t is the same in both sequences I(t) = P2AA(t) + P2 AT(t) P2AC(t) + P2AG(t)
Same as in the JC For 2 sequences Note that the prob. the 2 seq. are different at the site at time t is P = 1-I(t)
JC model Problem, we do not know t
K = the # of substitutions per site since the time of divergence between the two sequences K = 2(3t) where (3t) is the number of sub. between a single lineage
JC model # of substitutions per site since the time of divergence
Table 3.2 The one-parameter (jukes and Cantor 1969) and four-parameter (Blaisdell 1985) schemes of nucleotide substitution in matrix forma
3 Sub. Types Tv, 2 Ti Equal base frequencies 3 Sub. Types 2 Tv classes, Ti 2 Sub. Types Tv vs. Ti Equal base frequencies 2 Sub. Types Tv vs. Ti Single sub. type Equal base frequencies Single sub. type GTR TrN SYM K3ST HKY85 F84 F81 K2P JC
So Which model? • Multiple assumptions (= nuc. freq. to start etc). • Sampling errors due to the use of logarithmic functions (zero).
Protein encoding genes • Synonymous and Nonsynonymous • Very difficult as a site changes over time • CGG (arg) 3rd position is syn. But if 1st pos mutates to T then the 3rd position of the resulting codon becoming Nonsynonymous • Many sites are not completely synonymous or nonsynonymous • Depending the type of mutation, a TI at the 3rd position of CGG (arg) is syn, whereas a TV is nonsynonymous
Genetic Code – Note degeneracy of 1st vs 2nd vs 3rd position sites
Genetic Code Four-fold degenerate site – Any substitution is synonymous
Genetic Code Two-fold degenerate site – Some substitutions synonymous, some non-synonymous
Measuring Selection on Genes • Null hypothesis = neutral evolution • Under neutral evolution, synonymous changes should accumulate at a rate equal to mutation rate • Under neutral evolution, amino acid substitutions should also accumulate at a rate equal to the mutation rate
Counting #s/#a Ser Ser Ser Ser Ser Species1 TGA TGC TGT TGT TGT Ser Ser Ser Ser Ala Species2 TGT TGT TGT TGT GGT #s = 2 sites #a = 1 site #a/#s=0.5 To assess selection pressures one needs to calculate the rates (Ka, Ks), i.e. the occurring substitutions as a fraction of the possible syn. and nonsyn. substitutions. Things get more complicated, if one wants to take transition transversion ratios and codon bias into account. See chapter 4 in Nei and Kumar, Molecular Evolution and Phylogenetics.
Multiple ways to calculate Ks & Ka • Li et al., 1985 • Classify the nucleotides into: • nondegenerate: all changes at the site are nonsyn. • twofold degenerate: 1 of 3 is synonymous • fourfold degenerate: all 3 are syn.
Categorize degeneracy, • Further separate on mutation types (transitional, or transversional) for each type of degeneracy. • Ks: the number of synonymous substitutions per synonymous site • Ka: the number of nonsynonymous substitutions per nonsynonymous site
Why? • Study evolution • Positive selection • Negative selection