200 likes | 350 Views
Evaluation of Algorithms for the Retrieval of Snow Surface Temperature from Medium Resolution Satellite Data. 8th Circumpolar Symposium on Remote Sensing of Polar Environments, 8-12 June 2004, Chamonix Jostein Amlien, Hans Koren, Rune Solberg, Norwegian Computing Center (NR). Outline.
E N D
Evaluation of Algorithms for the Retrieval of Snow Surface Temperature from Medium Resolution Satellite Data 8th Circumpolar Symposium on Remote Sensing of Polar Environments, 8-12 June 2004, Chamonix Jostein Amlien, Hans Koren, Rune Solberg, Norwegian Computing Center (NR)
Outline • Introduction Background • Physical principles • Algorithm • Examples • Conclusion
SnowLab Projects • Snow variables • Coverage (SCA) • Albedo (SSA)/BRDF • Wetness (SLW / SW) • Temperature (STS) • Grain size (SGS) • SnowMan (NRC) • Monitoring of snow variables for use in improved hydrological models • SCA, BRDF, SLW/SW, (STS) • EuroClim (EU) • Monitoring of the cryosphere for improved climate forecasts • Snow, glaciers, sea ice • Snow variables: SCA, BRDF, SSA, STS, SLW/SW, SGS • EnviSnow (EU) • Monitoring of snow variables and soil moisture for use in improved hydrological models • SCA, BRDF, SLW/SW, (STS) EuroClim EnviSnow SnowLab SnowMan
Information retrieval Cryospheric product time series Updated climate model scenarios’ climate-change indicators Change indicator variables User The EuroClim concept Satellite remote sensing EuroClim Cryospheric variable retrieval In situ measurements Climate modelling Database
Surface Temperature of Snow (STS) • Snow temperature • Snow melting • Climate modelling • Energy balance • Snow metamorphosis • Melting of snow • flood warning • hydro-power • Remote sensing : • Predict melting: STS from optical thermal data • Monitoring melting : • wet snow from radar data • SSA, SGS and SCA from optical data
STS in EuroClim / EnviSnow • Cryospheric variable retrieval • Select and implement state-of-the-art algorithms for the production line • Approach • Litterature review • Implement relevant algorithms in SnowLab • Pilot sudy : • Compare results with field reference data • Select algorithm • Implement in the EuroClim and EnviSnow production lines
Brightness temperature (BT) • Derives from measured thermal radiance • Planck’s law • BT depends on • Surface temperature • Surface emissivity • surface type • wavelength • Atmospheric attenuation • atmosphere type • path length • wavelength • STS can be retrieved from Brightness temperatures • wavelength (11 µm &12µm) • view angle / path length
Main techniques for STS retrieval • Split-window techniques • combines two wavelengths Ts=a+bT11+c(T11-T12) • simple split-window • Coll’s global algorithm • Key’s algorithm Key et al (1997) • correct for atmospheric attenuation utilizing path length Ts=a+bT11+c(T11-T12) + d(T11-T12)/cos(Ø) • Dual view techniques • utilizes the dependence of atmospheric attenuation of view angles • single channel DV1CTs=a+bTn +c(Tn-Tf) vf / (vn- vf) • dual channel DV2C Ts=a+bT11n +cT11f + d T12n + e T12f
Calibrationdata • The algorithms are both physical and empirical • need calibration data • Calibration data sets from litt. review • Coll: fixed / calulated • Stroeve: simulated four atmospheres • split-window, DV1C, DV2C • Key: Arctic and Antarctic, 3 temperature ranges • separate for each sensor • Key, DV2C
Reference and field data • Field data • Field observations of snow variables incl. STS • Jotunheimen,southern Norway 2001, 2003, 2004 • locations at Heimdalshøe and Valdresflya • Satellite data • Terra MODIS large datasets downloaded • NOAA AVHRR numeruous frames • ERS-2 ATSR a few frames
Implementation of operational algorithm • Image input • Modis (mod02), HDF-files downloaded • Selected dataset (11 mm, 12 mm, viewangle) • Cloud detection [Mod35-prod / Mod02 classified ] • Snow detection [Mod35-prod / SCA = 100%] • Geometrical correction • e.g. UTM-33 • Radiometrical calibration • brightness temperature • Retrieval of surface temperature • Key’s algorithm • Export
Snow surface temperature, grain size index, and snow cover area STS SGS SCA 2003.04.22 2003.05.11 2003.05.31
| Snow surface temperature and snow grain size index HH-Heimdalshø (1840 m), VF-Valdresflya (1380 m) Precipitation Beito (blue), Skåbu (red)
Conclusion • Requires 100 % SCA within the 1km2 pixel • Results closely related to other snow parameters • Will integrate STS in retrieval of other snow parameters • Snow wetness and liquid water content • multi-sensor approaches (wet snow from radar) • Fast delivery is crucial for snow wetness