640 likes | 751 Views
Experiences in Linking a Soil C and N Module into a Dynamic Global Vegetation Model (DGVM). Jo Smith 1 , Kevin Coleman 2 , Pete Smith 1 Andy Whitmore 2 , Pete Falloon 3 Matt Aitkenhead 1 , Chris Jones 3. 1. 2. 3. Questions. What is the state of the art?
E N D
Experiences in Linking a Soil C and N Module into a Dynamic Global Vegetation Model (DGVM) Jo Smith1, Kevin Coleman2, Pete Smith1 Andy Whitmore2, Pete Falloon3 Matt Aitkenhead1, Chris Jones3 1 2 3
Questions • What is the state of the art? • What data are required to improve and evaluate the model? • How could better science improve the model? • What are the key feedbacks to be quantified? • Are other feedbacks expected? • What significant improvements in next 5 years?
Global economic mitigation potential for different sectors at different carbon prices IPCC WGIII (2007)
Uncertainty in anthropogenic carbon emissions up to 400 ppm Vulnerability of the Carbon Cycle in the 21st century Uncertainty in biospheric-carbon-climate feedback up to 250 ppm IPCC SRES 2000; Friedlingstein et al. 2006 Slide adapted from Pep Canadell, GCP
Objectives • Soil C and N component • Fully integrated • Had-GEM • Existing model • Tested and published • Live • Adapted for general application • Source code available to all • Programming style • Provenence
HadGEM2 JULES UK community land surface model • ECOSSE • Model of soil C and N • all soil types & • all land uses SUNDIAL Model of soil C and N - arable soils RothC Model of soil C MOSES Soil water TRIFFID Plant model
CO2 CO2 BIO BIO HUM HUM Soil Carbon Model –RothC (Jenkinson, 1977) DPM Decomposable plant material Active organic matter RPM Resistant plant material Stabilised organic matter IOM Inert organic matter
Evaluation of Roth-C Tamworth - fallow Bad Lauchstädt - arable No fertiliser Praha-Ruznye - arable No fertiliser EG. Smith et al (1997) Geoderma, 81, 153-225 Bad Lauchstädt - arable High fertiliser ` Praha-Ruznye - arable High fertiliser Tamworth – clover/lucerne Soil organic carbon (t C ha-1) Waite – wheat / fallow Waite – wheat/oats/pasture Years
Evaluation of Roth-C EG. Smith et al (1997) Geoderma, 81, 153-225 Rothamsted – Park grass No fertiliser Geescroft Wilderness Soil organic carbon (t C ha-1) Rothamsted – Park grass Organic manure Calhoun forestry Years
ITE DNDC ROTHC DAISY SOMM NCSOIL CANDY Verberne CENTURY Evaluation of Roth-C EG. Smith et al (1997) Geoderma, 81, 153-225 Comparison of 9 major soil organic matter models RMSE RMSE95%
ITE DNDC ROTHC DAISY SOMM NCSOIL CANDY Verberne CENTURY Evaluation of Roth-C EG. Smith et al (1997) Geoderma, 81, 153-225 Comparison of 9 major soil organic matter models E95% E E95%
ITE DNDC ROTHC DAISY SOMM NCSOIL CANDY Verberne CENTURY Evaluation of Roth-C EG. Smith et al (1997) Geoderma, 81, 153-225 Comparison of 9 major soil organic matter models t(r) )
Soils Data Historical GCM LPJ -DGVM LPJ -DGVM EFISCEN Climate Data NPP Data ATEAM Rounsevell Technology Data Land Use Data Ewert et al. 2005 Corine database Application of Roth-CSoft link to a DGVM Smith et al (2005) GCB, 11, 2141-2152 Soil C (ROTH-C)
Economically oriented A1 – “World Markets” A2 – “Provincial Enterprise” • very rapid economic growth • low population growth • rapid introduction of technology • personal wealth above environment • strengthening regional cultural identities • emphasis on family values and local traditions • high population growth • less concern for rapid economic development Global Local B1 – “Global Sustainability” B2 – “Local Stewardship” • rapid change in economic structures • "dematerialization” • introduction of clean technologies • emphasis is on global solutions • emphasis is on local solutions • less rapid, and more diverse technological change • strong emphasis on community initiative • local, rather than global solutions Environmentally oriented Scenarios for future climate(IPCC SRES) Nakicenovic et al. (2000), Smith & Powlson (2003)
Climate-only impact on forest SOC (effect of different climate scenarios) (HadCM3)
Climate-only impact on cropland and grassland SOC - (effect of different climate scenarios) (HadCM3)
Temperature Water balance Change in forest SOC - climate only SOC Note: 2080 and 1990 are 30 year averages of 2051-2080 and 1961-1990 respectively
Soils Data Historical GCM LPJ -DGVM LPJ -DGVM EFISCEN Climate Data NPP Data ATEAM Rounsevell Technology Data Land Use Data Ewert et al. 2005 Corine database Application of Roth-CSoft link to a DGVM Smith et al (2005) GCB, 11, 2141-2152 Soil C (ROTH-C)
Comparing climate-only with climate & litter effects for forest (HadCM3-A2)
Comparing climate-only with climate&NPP effects for croplands & grasslands (HadCM3-A2) Climate Only Climate and NPP
Effect of technology in croplands & grasslands (HadCM3-A2) Minimum Climate Only Climate & NPP Climate & NPP & Tech (HadCM3-A2) Maximum
Soils Data Historical GCM LPJ -DGVM LPJ -DGVM EFISCEN Climate Data NPP Data ATEAM Rounsevell Technology Data Land Use Data Ewert et al. 2005 Corine database Application of Roth-CSoft link to a DGVM Smith et al (2005) GCB, 11, 2141-2152 Soil C (ROTH-C)
Impact on total forest SOC No land-use change
Impact on total forest SOC Including land-use change
B1 B2 A1FI A2 Impact on total grassland SOC Including land-use change
B1 B2 A1FI A2 Impact on total cropland SOC Including land-use change
+0.1% -0.3% +19% +27% Overall effect on forest SOC • land-use change • change in age-class structure • climate and CO2 driven NPP increase • direct climate impacts on the soil Total SOC (Pg)
-35% -44% +25% -20% Overall effect on grassland SOC • land-use change • technology improvement • climate and CO2 driven NPP increase • direct climate impacts on the soil Total SOC (Pg)
-53% -51% -39% -40% Overall effect on cropland SOC • land-use change • change in age-class structure • technology improvement • climate and CO2 driven NPP increase • direct climate impacts on the soil Total SOC (Pg)
-23% -24% -0.5% -5% Overall effect on total SOC • land-use change • technology improvement • climate and CO2 driven NPP increase • direct climate impacts on the soil • includes biofuels and other land uses Total SOC (Pg)
Plant Growth Soils Data Historical GCM LPJ -DGVM LPJ -DGVM EFISCEN CO2 Climate Data NPP Data ATEAM Rounsevell Technology Data Land Use Data Ewert et al. 2005 Corine database Feedbacks Soil N N2O Smith et al (2005) GCB, 11, 2141-2152 Soil C (ROTH-C) CO2
INPUTS Yield & manage CO2 CO2 RPM DPM Carbon Component of SUNDIAL IOM BIO HUM Soil C and N model for arable land- SUNDIAL Soil level Decomposition Texture Module Water Module INPUTS Max.Water level Rain,PET Moisture Texture INPUTS Soil Parameters Decomposition Drivers Temperature Temperature Module INPUTS Air Temp Bradbury et al, 1993 Smith et al, 1996
NH3 N2O & N2 Plant N Soil C and N model for arable land- SUNDIAL INPUTS Yield & management DPM RPM Soil level NH4+ Nitrogen Component of SUNDIAL IOM BIO HUM Decomposition NO3- Moisture Texture Texture Module Water Module INPUTS Max.Water level Rain,PET Decomposition Drivers INPUTS Soil Parameters Temperature Temperature Module INPUTS Air Temp Leached N Bradbury et al, 1993 Smith et al, 1996
Evaluation of SUNDIAL Simulated and Observed Soil Mineral N (0-90 cm) Loam site (Krummbach) - Treatment Without Manure SUNDIAL MINERVA RMSE 52 47 t(M) 1.5 (n.s) - SUNDIAL
Evaluation of SUNDIAL Simulated and Observed Soil Organic C and N Loam site (Krummbach) All non-significant
CO2 CH4 CH4 CO2 RPM DPM Methane Oxidation Meth. Oxid. IOM BIO HUM Water level Oxygen Module Oxygen DOC Acidity Acidity Module Soil C and N model for all land use- ECOSSE INPUTS NPP & LU Type INPUTS Yield & manage Soil level Carbon Component of ECOSSE Decomposition Texture Module Water Module INPUTS Soil Parameters INPUTS Max.Water level Rain,PET Moisture Texture Decomposition Drivers Temperature Temperature Module INPUTS Air Temp
NH3 N2O & N2 Plant N Oxygen Module Acidity DON Acidity Module Soil C and N model for all land use- ECOSSE INPUTS NPP & LU Type DPM RPM Soil level NH4+ Nitrogen Component of ECOSSE IOM BIO HUM Decomposition NO3- Water level Moisture Texture Texture Module Water Module INPUTS Max.Water level Rain,PET Decomposition Drivers INPUTS Soil Parameters Temperature Temperature Module INPUTS Air Temp Leached N
Independent evaluation – CO2 release Calculations by B. Foereid, UoA Respiration rate during laboratory incubation (Foereid et al., 2004)
Independent evaluation – soil ammonium and nitrate in a peat in Finland Ammonium and nitrate simulated by ECOSSE for a peat cultivated with spring barley in southern Finland (60o49’N, 23o30’E). Calculations by B. Foereid, UoA
Independent evaluation – soil ammonium in a cultivated peat in Finland Soil NH4 in a peat cultivated with spring barley in Southern Finland (60o49’N, 23o30’E) (Regina et al, 2004). Calculations by M.Aitkenhead, UoA
Independent evaluation – nitrous oxide emissions from a cultivated peat in Finland N2O emissions for a peat cultivated with spring barley in Southern Finland (60o49’N, 23o30’E) (Regina et al, 2004). Calculations by M.Aitkenhead, UoA
Independent evaluation – Mass loss & N from litter bags – more to do Mass loss from litterbag experiment in Harvard forest, US (Magill & Aber, 1998) Nitrogen content in remaining material from litterbag experiment in Harvard forest, US (Magill & Aber, 1998) Calculations by B. Foereid, UoA
Nitrate in 50 cmImplementation of “birch effect” Growing season Growing season Data from Ikerra (1999)
Ammonium in 50 cmImplementation of “birch effect” Growing season Growing season Data from Ikerra (1999)
Soil Water 0 – 50 cm 0 – 15 cm 15 - 30 cm Water in mm 30 - 50 cm Data from Hartemink (2000)
Application of ECOSSE National simulations… • Test model at site scale • Compare to best current estimates at national scale