840 likes | 1.4k Views
INTRODUCCION A LA FIABILIDAD, ANALISIS DE FALLO, APLICACION AL DISEÑO Y AL MANTENIMIENTO. 1º Congreso Nacional de Estudiantes de Ingeniería Mecánica. ¿Qué es la fiabilidad?. Permanencia de la calidad de los productos (o servicios) a lo largo del tiempo.
E N D
INTRODUCCION A LA FIABILIDAD, ANALISIS DE FALLO, APLICACION AL DISEÑO Y AL MANTENIMIENTO 1º Congreso Nacional de Estudiantes de Ingeniería Mecánica
¿Qué es lafiabilidad? Permanencia de la calidad de los productos (o servicios) a lo largo del tiempo. Capacidad de desarrollar adecuadamente su labor a lo largo del tiempo. Fiabilidad: Definición AFNOR X 06-501 ¨Fiabilidad es la característica de un dispositivo expresada por la probabilidad de que un dispositivo cumpla una función requerida en las condiciones de utilización y para un período de tiempo determinado¨. Probabilidad: es la relación número de casos favorables número de casos posibles asociada a un tiempo t . Se denomina R (t) = P (cumplir una misión) = P (buen funcionamiento) R traducción del inglés Reliability
La Fiabilidad intenta garantizar que el producto permanecerá en buenas condiciones durante un periodo razonable de tiempo • Según la definiciones se tiene que pensar muy claramente qué significa • Funcionamiento satisfactorio • Tiempo de funcionamiento (Misión) • Condiciones de funcionamiento
Necesidad de fiabilidad • Desde un punto de vista puramente económico, es deseable una alta fiabilidad para reducir los costos totales del producto. • El hecho de que en algunos sistemas militares el costo anual de mantenimiento sea diez veces el costo original del mismo, pone de manifiesto esta necesidad. (ciclo vida) • También hay que considerar el aspecto de seguridad (el fallo de un sistema ABS en un automóvil puede ser catastrófico). • Existen otro aspectos como retrasos de horarios, incomodidades, insatisfacción del cliente y pérdida de prestigio del fabricante. • Cada vez son más las empresas y organismos que en sus contrataciones exigen ciertas normas de fiabilidad (MIL HDBK 217 en USA…)
Perspectiva histórica de la teoría de la fiabilidad • Estudios para poder evaluar la mortalidad derivada de las epidemias. • Compañías de seguros, para determinar los riesgos de sus pólizas de seguro de vida. • Tablas de vida: La primera tabla de vida data de 1693 y es debida a Edmund Halley Orígenes: se utilizaban los métodos actuariales tanto para estimar la supervivencia de pacientes sometidos a distintos tratamientos como para estudiar la fiabilidad de equipamientos, en particular de los ferrocarriles. Siglo XX: En 1939 Waloddi Weibulll, cuando era profesor del Royal Institute of Technology en Suiza, propuso una distribución para describir la duración de materiales, que más tarde llevaría su nombre. En 1951 Epstein y Sobel empezaron a trabajar con la distribución exponencial como modelo probabilístico para estudiar el tiempo de vida de dispositivos
Paradigmas • En la industria los equipos y sistemas crecen en complejidad. • Existen mayores exigencias a la eficiencia de los costos del ciclo de vida útil de las maquinas de producción. • Cada fabricante intenta llegar al objetivo de calidad exigido por el mercado al mínimo costo posible.
Objetivo de Fiabilidad y Mantenibilidad Desde el diseño existe la necesidad de entregar equipos o sistemas que tengan las prestaciones deseadas por el Cliente y que además sean Confiables, de fácil mantenimiento y con funcionamiento seguro y económico durante su vida útil.
Las Teoría de la Fiabilidad Incorporan la incertidumbre a la Ingeniería. • • Podríamos decir que la certeza de un hecho (en nuestro contexto de Falla de Maquina), es un acontecimiento DETERMINISTA con un resultado finito. • En cambio la incertidumbre de un hecho seria un acontecimiento INDETERMINISTA con un resultado probabilístico.
Fiabilidad y Mantenimiento Desde el punto de vista de la ingeniería, la fiabilidad es la probabilidad de que un aparato, dispositivo o persona desarrolle una determinada función bajo condiciones fijadas durante un periodo de tiempo determinado. • La confiabilidad de un elemento puede ser caracterizada a través de distintos modelos de probabilidades. • Podemos describir varias distribuciones de fallas comunes y ver qué podemos aprender de ellas para gestionar los recursos de mantenimiento. Convirtiendo el conocimiento ganado de ellas en acciones PROACTIVAS de Mantenimiento y aplicarlas en el Diseño.
Herramientas de Fiabilidad Se estudia mediante el análisis estadístico de datos de supervivencia. ISO define fiabilidad como la probabilidad de que un componente o sistema, desarrolle durante un periodo de tiempo dado, la tarea que tiene encomendada sin fallos, y en las condiciones establecidas. • Estudiar Duraciones de Procesos que es común en muchas ciencias: • Duración de un componente (Fiabilidad) • Supervivencia de un paciente a un tratamiento (Medicina) • Duración del desempleo (Economía) • Edad de las personas (Demografía y sociología)
Veamos, a partir de un histograma podemos desarrollar las cuatro funciones de importancia para la caracterización de la fiabilidad.
- pdf. Probability Density Function En estudios de mantenimiento necesitamos pasar del anterior histograma a funciones continuas, debido que la variable tiempo de fallo es continua. Esta funciones nos dan una idea clara de la distribución de fallos. Empezamos por la función llamada pdf que indica la densidad probable de fallas en cada intervalo t, cuyo total será el área encerrada bajo la curva e igual a: pdf = 48/48 =1 Pudiendo llamar a t1 y t2, -∞ y ∞ respectivamente
CDF Cumulative Density Function: aquí de -∞ a Tiempo t, seria la probabilidad de que falle en tiempo t. el área bajo la curva - transcurrido t (Función Repartición ) cdf=14/48 Intervalo -∞ a t, la acumulación de fallas Tiempo t
R(t) Reliability (Fiabilidad) Esta es la probabilidad de éxito o sea que sobrevivan sin falla transcurrido el mismo tiempo t. Representando por el área bajo la curva t hasta infinito. R(t)= 1- cdf Tiempo t
h (t) Función riesgo = pdf/1-cdf El último tipo de función que tenemos derivada de las anteriores, es la Función de Riesgo, también llamada tasa de falla λ o tasa de mortalidad h(t). (t) DOMINIO ELECTRONICO desclasificación Hipótesis exponencial constante 1 2 3 Edad t desarrollo obsolescencia Madurez (fallos aleatorios) Inicio utilización
h (t) Función riesgo = pdf/1-cdf DOMINIO MECANICO (t) Influencia del desgaste sobre (t) Curva debida a los fallos precoces desclasificación Madurez 3 2 1 Edad t rodaje obsolescencia Puesta en servicio
Cuando la tasa de fallo del elemento responde a la curva de la bañera es conveniente realizar un ensayo acelerado del mismo (en condiciones de stress) para que supere la zona de mortalidad infantil o fallas infantiles. – determinar cuando comienza la vida útil del producto y ofrecer a los clientes una garantía de funcionamiento durante ese periodo de funcionamiento problemático. – Una vez superado el periodo crítico, la empresa está razonablemente segura de que el producto tiene una posibilidad de fallos reducida
La distribución de fallas de diferentes tipos de maquinaria no son las mismas. Aun varían en una misma maquina durante su operación. Sus formas pueden ser estudiadas a partir de las funciones pdf, cdf y tasa de falla de los datos reales de mantenimiento o de ensayos de fiabilidad. Estos dan forma a determinadas expresiones matemáticas conocidas como distribuciones obteniendo: • Dist. Exponencial • Dist. Normal • Dist. Lognormal • Dist. Weibull
EL MODELO EXPONENCIAL pdf f (t) = exp (-t), t 0 cdf F(t) = 1 - exp(-t), t 0 R(t) = h(t) R(t) = exp (-t ), t 0
EL MODELO DE WEIBULL =5x) f (t) =0,5x) =3,6 =1x) f (x) =2,5x) parámetro de forma > 0; parámetro de escala > 0; parámetro de posición - < < + =2x) t (t) =4 3 2 2 1 1,5 0,5 1 0,5t t
Las características de la distribución de Weibull f(t) - El parámetro de posición (en unidad de tiempo) Se llama también parámetro de diferenciación o de localización. Significado: indica la fecha de inicio de los fallos. -- si > 0, hay supervivencia total entre t = 0 y t = ; -- si = 0, los fallos empiezan en el origen del tiempo; -- si < 0, los fallos han empezado antes del origen del tiempo. t 2 < 0 2 = 0 2> 0
Ejemplo Obtención de la fiabilidad de neumáticos a través del Análisis de la degradación Siete marcas de neumáticos fueron controlados en su desgaste cada 5.000 millas, midiendo la profundidad de cada uno. La tabla que contiene las mediciones desde su inicio hasta las 30.000 millas f (t) = exp (-t), t 0 F(t) = 1 - exp(-t), t 0 R(t) = exp(-t ), t 0 Degradación Critica y= 2 mm
Ejemplo 5 ejes templados se ensayan a la resistencia hasta que se rompen. 90 % = 24000 Ciclos 8 % = 8000 Ciclos 50 % = 17000 Ciclos
Ejemplo aplicado al mantenimiento Frezadora ZAYER 3000 BF. En el año 1990 se le realizó retrofiting a la máquina donde se le cambió el c.n.c. Gettys original por uno marca Fagor.
PROYECTO DE INVESTIGACION Estudio probabilístico de Fallos, uso del Dataminig y Datawarehouse para su aplicación al Mantenimiento Introducción Origen de la Propuesta. Aportes de cada Disciplina: Ing. Fiabilidad y Sistemas de Información. Objetivos Metodología de Trabajo Impacto esperado/Transferencia al Medio Avance del Proyecto Conclusión Integrantes del Equipo de Trabajo
1. Introducción • Este proyecto está orientado a estudiar y analizar el impacto de aplicar TI/SI al estudio probabilístico de los fallos en el Mantenimiento, como función cuyo objetivo es la prolongación y/o recuperación de las funciones de determinado componente o máquina. • Si las máquinas no fallaran, no habría mantenimiento, conceptualizando los Fallos como eventos indeseables que debemos tratar de evitar, prevenir o anticipar a través del estudio de su probabilidad de ocurrencia mediante métodos probabilísticos automáticos.
.2. Origen de la Propuesta Trabajo en Equipo de dos cátedras de la carrera: • Fundamentos de Informática: 1er. Nivel y uno de sus objetivos es formar elementos de juicio orientados a la resolución automática de problemas, mediante a través del desarrollo de destrezas en el uso tanto de Hardware como de Software. • Mantenimiento: 5to. Nivel y cuyo objetivo es gestionar el mantenimiento a través de herramientas que permitan dominar fallos, por metodologías basadas en registros de confiabilidad del material y su comportamiento; TPM, Mantenimiento Preventivo, Análisis de Software y outsourcing. En todos los casos, el proyecto se desarrolla con actividades docentes, por lo cual la transferencia al aula es directa.
3. Aportes de cada Disciplina: Ing. Fiabilidad e Ing. Sist. Información • Ingeniería Fiabilidad Es el estudio de la longevidad y fallo de los equipos, que investiga sus causas a través de la aplicación de una metodología basada en dos enfoques: • Modelos: deductivo, de tendencia, inductivo; utilizado en la etapa de diseño del material. • Métodos para cálculo de Fiabilidad son dos: Analítico (fórmulas matemáticas, simulación de escenarios) y Gráfico (ensayos de larga duración o acelerados). • Todos los estudios de fiabilidad están sometidos a su tratamiento a través de la variable continua tiempo; en el cual se analiza la tasa de fallo.
La Informática como una ciencia de aplicación interdisciplinaria se transforma en una excelente herramienta para la Toma de Decisiones automáticas a través del uso de Base de Datos. • Base de Datos: colección de datos y/o documentos digitales que pueden ser homogéneos o no, que disponen de Sistemas de Gestión de Bases de Datos (relacionales o documentales) y un conjunto de aplicaciones que hacen posible su publicación, integración y consulta dentro o fuera de Internet (Telemantenimiento). • Herramientas de Bases de Datos: - Datawarehouse (DW) - Datamining (DM)
- DW o Almacenes de Datos: Generan Bases de Datos tangibles con una perspectiva histórica, utilizando datos de múltiples fuentes (excel, access, sql, etc.) que se fusionan en forma congruente y son soportados por un motor de BD fuerte y con gran capacidad de almacenamiento. - DM o Minería de Datos: Predicen futuras tendencias y comportamientos, permitiendo en los negocios tomar decisiones proactivas y conducidas por un conocimiento acabado de la información (knowledge-driven) de los fallos. Se basan en la extracción de información oculta y predecible de grandes Bases de Datos; que nos permiten responder a preguntas sobre el comportamiento del material en los fallos, que consumen demasiado tiempo para poder ser resueltas y cuyos usuarios de esta información no están dispuestos a aceptar. Ej.: Reportes.
La Minería de Datos es una disciplina que está influyendo en nuestros días dentro del ámbito del análisis de datos. - Es un conjunto de metodologías y herramientas que permiten extraer el conocimiento útil (patrones de comportamiento, modos de operación, información útil para descubrir fallos, tendencias, etc.) para la ayuda en la toma decisión, comprensión y mejora de proceso o sistemas, etc; partiendo de grandes cantidades de datos. - Esta herramienta no se basa en una metodología estándar y genérica que resuelve todo tipo de problemas, sino que consiste en una metodología dinámica e iterativa que va a depender del problema planteado, de la disponibilidad de las fuentes de datos, del conocimiento de las herramientas necesarias y de los requerimientos y recursos de la empresa. • Ej. Campos de aplicación control, optimización y supervisión de procesos industriales, control de calidad, tendencias de la Bolsa de Valores, diagnóstico de enfermedades,predicción de ventas, detección de fraudes y evasión de impuestos, lavado de dinero, etc.
4. Objetivos del Proyecto de Investigación • Automatizar el tratamiento de fallos a través del uso de las Bases de Datos para su estudio de comportamientos que permitan tomar decisiones proactivas basadas en repositorios de datos históricos y en la criticidad de los sistemas en funcionamiento. Objetivos derivados: - Determinar si la aplicación de ambas herramientas (DW y DM) facilitan no solo análisis prospectivos automatizados (M. Preventivo) de los fallos, sino eventos futuros cuyo comportamiento puede inferirse del análisis de ciertos parámetros. - Crear conciencia en los alumnos, para que a partir del uso de estas herramientas, en problemas reales y de distinto nivel de complejidad, apliquen sistemas de Gestión de Información al Mantenimiento.
5. Metodología de Trabajo • El proceso es realizado en una secuencia de actividades, algunas de estas superpuestas en el tiempo, pero básicamente responden a los siguientes pasos: • Preparación del estudio. • Selección del Sistema y de sus límites (muestra representativa) • Análisis del Sistema, datos existentes y medios estadísticos aplicados al estudio de fiabilidad. • Evaluación de consecuencias de fallos. • Establecer algoritmos que permitan generar un Sistema de Decisión o respuesta al fallo. • Aplicarlo a escala piloto y determinar su aplicabilidad. • Validarlo. Cabe aclarar que esta Metodología forma parte de un Plan de Trabajo a mediano plazo presentado por la U.T.N. – F.R.C.
Nuestra intención es que este Proyecto Innovador repercuta positivamente en tres escenarios: • Científico y/o tecnológico: • Basado en el uso de un software especializado (enlatado) desarrollado para satisfacer las necesidad primordiales del área Fiabilidad. Algunos son: • - JMPTM (www.jmpdiscovery.com) • - SAS (www.sas.com/statistics) • - ReliaSoft’s Alta 6 (www.reliasoft.com) • - BQR (analizando factibilidad de adquirir licencia académica) • Formación de RRHH: • Los Docentes involucrados, en su rol natural de multiplicadores de conocimiento, motivarán y formarán alumnos con una clara visión estratégica de la gestión de mantenimiento automatizado a través del uso de herramientas Informáticas; ya que la transferencia al aula es directa. • Consolidará en el seno del Dpto. Grupos de I&D, que interactuarán en forma interdisciplinaria; así como capacitación en temas DW/DM para Docentes de la carrera. 6. Impacto esperado/Transferencia al Medio