1 / 32

Mass & Radius of Compact Objects F astest pulsar and its stellar EOS

Mass & Radius of Compact Objects F astest pulsar and its stellar EOS. CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing. Significance of Measuring Star mass and radius – Neutron or Quark.

zinna
Download Presentation

Mass & Radius of Compact Objects F astest pulsar and its stellar EOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing

  2. Significance of Measuring Star mass and radius – Neutron or Quark • we can measure physical parameters of star,mass and radius, probethe nuclear physics and understand EOS • we can study the strong gravitational field, where Einstein GR might be tested

  3. Neutron Stars? • 40+ NSs, M=1.4 M⊙ , R= 10 -30 km ? • Radio pulsars, X-ray NS, binary systems (MT77) (Stairs 2004) (Lattimer & Prakash 2004,2006)

  4. NS mass determined in Binary system MSP, PSR J0751+1807, M = 2.1(2) M⊙ ?; Nice et al. 2004 2A1822-371, M>0.97+-0.24 M⊙; Jonker et al 2003 ; (1.74 M⊙ ,2008) DNS: M=1.25M⊙, M=1.34 M⊙ , double pulsars (2004)

  5. PSR J0737-3039A/B Post-Keplerian Effects R: Mass ratio w: periastron advance g: gravitational redshift r & s: Shapiro delay Pb: orbit decay . . • Six measured parameters – only two independent • Fully consistent with general relativity (0.1%) A: 1.34 M⊙ ; B: 1.25 M⊙ (Kramer et al. 2005)

  6. No direct measure of radius ! Measured M-R relations • Apparent Radius: R∞=R/(1-Rs/R)1/2 • Gravitational redshift: z=(1-Rs/R)-1/2 -1 • Mass density: M/R3 • g=~M/R2 • 1E1207.4-5209, Aql X-1 and EXO 0748-676 Rs=2GM: Schwarzschild radius

  7. For perfect Black Body: Observed Total Flux: F=4 R∞2SB T∞4/d2 Photon Spectra: Key to Measuring Radius RX J1856.5-3754 (Fred Walter’s Star !) Spectra are seldom black body: Neutron Stars have atmospheres ! Composition and Magnetic field shape the spectra. Other issues: Is the surface temperature and radiation isotropic ?

  8. The Mass-Radius Exotic Stars Gravitational Red-shift: observation of spectral lines (Cottam, et al 2002). QPOs indicate ISCO

  9. Typical twin kHz QPOs (24/35) Z: Sco x-1, van der Klis et al 2006 Separation ~300 Hz ~Spin ? Typically: Twin KHz QPO Upper ν2 ~ 1000 (Hz) Lower ν1 ~ 700 (Hz) Twin 21/27 sources; ~290

  10. Constrain star M_R by kHz QPOs • Inner boundary to emit kHz QPO: ISCO, R > MAX M, R • M<2.2 M⊙ (1kHz/freq) • R<19.5 km (1kHz/freq) • M/R3 relation known by model for twin kHz QPOs SAXJ 1808.4: M/R3 by Burderi & King 1998

  11. kHz QPOs from LMXBs: R-ISCO Sco X-1 Excluded kHz QPO maximum frequency constrains NS equations of state

  12. Striking case of RX J1856.5-3754Truempet et al. 2004; Burwitz et al. 2003 This is an isolated neutron star (INS), valuable because: We can see the surface There are minimal magnetospheric complications If we can see the surface, we can determine the angular diameter The parallax gives the radius R spectral lines give the surface composition, T, and g R and g give M M/R constrains the EOS of matter at nuclear densities Gravitational light bending effect: R/M <~10 km/M⊙ ; Ransom et al 2004  Apparent radius R∞=16.5 km (d/117pc), Truempet 2005  True radius 14 km (1.4 M⊙), stiff EOS, rule out quark star (Pons et al, 2002; Walter & Lattimer, 2002 )

  13. Relativistic precession model by Stella & Vietri 1999 M inferred from twin kHz QPOs Max frequency – ISCO ISCO Saturation Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν2 = νkepler ν1 = νprecession = ν2 [1 – (1 – 3Rs/r)1/2] ∆ν = ν2 - ν1 is not constant

  14. M/R3 inferred from twin kHz QPOs Max frequency – Star Surface R Kepler frequency νk = (GM/4π2r3)0.5 νk = 1850 (Hz) A X3/2 ν1 = ν2X (1- (1-X)1/2)1/2 A2=m/R63; X=R/r, m=M/M⊙ , R6 = R/106 cm Zhang 2004, AA; Li & Zhang 2005 Maximum kHz QPO occurs at R or ISCO=3Rs A> νk /1850 (Hz) and m < 2200 (Hz)/ νk Miller et al 1998

  15. Constraining M – R by R∞ and z • 1E 1207.4-5209: • R∞=4.6 km, Bignami et al 2004 • z=0.12-0.23; Sanwal et al 2002 ? • R 6 =R∞6 /(1+z) • M=f(z)R∞6 /(1+z) • F(z)=(20/3)z(1+z/2)/(1+z)2

  16. Constraining M – R by R∞ and A~M/R3 • Aql X-1 : • 9 km<R∞<18 km, Rutledge et al 2001 • one kHz QPO: 1040 Hz; van der Klis 2006 • R6 =R∞6 /(1+0.15(A/0.7)2 R2∞6 )0.5 • m=AR36

  17. Constraining M – R by A=M/R^3 and z • EXo 0728-676: • z=0.35; Cottam et al 2002 • One kHz QPO 695 Hz; Homan & van der Klis 2000 • R6 =1.43f0.5(z)(0.7/A) • m=1.43f1.5(z)(0.7/A) • f(z)=(20/3)z(1+z/2)/(1+z)2

  18. 1E1207.4-5209, Apparent radius, gravitational redshift QUARK STAR ?

  19. Aql X-1 , Apparent radius=14 km, single kHz QPO

  20. EXO 0748-676 , gravitational redshift, kHz QPO

  21. Measuring NS Mass & Radius by kHz QPO, gravitational redshift and apparent radius Mass-Radius relations • Apparent Radius: R∞=R/(1-Rs/R)1/2 Haensel 2001 • Gravitational redshift: z=(1-Rs/R)-1/2 -1 Cottam et al 2003, z=0.35 • Mass density: M/R3 (by kHz QPOs) Zhang 2004 1E1207.4-5209, Aql X-1 and EXO 0748-676 Rs=2GM: Schwarzschild radius

  22. Measuring STAR Mass-Radius by kHz QPO, gravitational redshift and apparent radius Zhang, Yin, Li, Xu, Zhang B, 2007 AqlX-1, EXO 0748-676 Samples CN1/CN2: normal neutron matter, CS1/CS2: quark star CPC: Bose-Einstein condensate of pions

  23. How about the Sub-millisecond Pulsar XTE J1739285, spin=1122 Hz • Spin=1122 Hz • Radio PSR, 716 Hz Quark Star, FAST target Cheng et al 1998, Li 1999; Xu, Qiao, Wang 2002 Horvath 2002 Harko, 2005 Zhang, ..Li, 2007 More……

  24. ISCO condition, m ≤ 2200 (Hz)/spin • Keplerian at R, crust split

  25. Max kHz QPO 1330 Hz Zhang et al. 2006 difference Cir X-1 Ratio

  26. Spin Frequency - LMXBs Spin frequency: Max: 1122 Hz, Kaaret et al 2007 Min: 45 Hz Villarreal & Strohmayer2004 23 Spin sources, Av ~ 400 Hz Radio MSP:Max Spin=716 Hz

  27. kHz QPO & spin relation

  28. List of the Low-Mass X-Ray Binaries Simultaneously Detected Twin Kilohertz QPO and Spin Frequencies • QPO (Hz) spin Dnu/spin • 4U 160852 . . . . . . . . 802–1099 619 1.3 • 4U 163653 . . . . . . . . 971–1192 581 1.7 • 4U 170243 . . . . . . . . . 1055 330 3.2 • 4U 172834 . . . . . . . . . 582–1183 363 1.6 • KS 1731260 . . . . . . . . 1169 524 2.2 • 4U 191505 . . . . . . . . . 514–1055 270 1.9 • XTE J1807294 . . . . . . 353–587 191 1.8 • SAX J1808.43658 . . . .694 401 1.7 • QPO data, Belloni et al. (2005), van der Klis (2006)

  29. Fastest Pulsar XTE J1739-285 spin = 1122 Hz M – R Kaaret et al. 2007 Quark Star = sub-MSP ? Quark Star ?

  30. Summary • Conclusions: M-R relations • Mass, measured • Radius, not measured directly • Spectra, MR relation • Redshift, M/R • kHz QPO, M/R^3, constraints • Others… Ozel 2006 Not clear: fuzzy in M-R EOS: Quark or Neutron ? THANKS

  31. Saturation of kHz QPO frequency ?ISCO – Star Mass 4U1820-30, NASA Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface

More Related