550 likes | 750 Views
Mixed-valence vanadates at high-pressures Andrzej Grzechnik Institute of Crystallography, RWTH Aachen University. Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure.
E N D
Mixed-valence vanadates at high-pressures AndrzejGrzechnik Institute of Crystallography, RWTH Aachen University
Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure P.Y. Zavalij and M.S. Whittingham, Acta Cryst. B55, 627 (1999)
Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure • ► Electrochemistry • ► Catalysis • ► Correlated electron systems • Spin-Peierls transitions • Spin gap formation • Charge, spin & orbitalordering Metal-insulatortransitions • ► Magnetism P.Y. Zavalij and M.S. Whittingham, Acta Cryst. B55, 627 (1999)
Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) the VO2 – V2O5 system V2O5 (Pmmn) VO2 (P42/mnm)
Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) the VO2 – V2O5 system V2O5 (Pmmn) VO2 (P42/mnm) n = 3 V3O7 (C2/c) An insulator and a uniaxial ferromagnet: H. Nishihara, Y. Ueda, K. Kosuge, H. Yasuoka, S. Kachi, J. Phys. Soc. Jpn. 47, 790 (1979).
Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) the VO2 – V2O5 system V2O5 (Pmmn) VO2 (P42/mnm) n = 4 V4O9 (Pnma) An antiferromagnet: S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda, J. Solid State Chem. 183, 1496 (2010).
Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) the VO2 – V2O5 system V2O5 (Pmmn) VO2 (P42/mnm) n = 6 V6O13 (Pnma) A metal-insulator phase transition followed by an antiferromagnetic transition: Y. Ueda, K. Kosuge, S. Kachi, Mater. Res. Bull. 11, 293 (1976).
Corundum type Rutile type Binary vanadium oxides Magnéli phases: VnO2n-1 (n = 3÷9) the V2O3 – VO2 system VO2 (P42/mnm) V2O3 (R-3c) V3O5 (Cc) V8O15 (P-1)
Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at high pressures?
Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at high pressures P An interplay of theeffects of a chemicalcomposition and of highpressureonthestructuralstability and physicalproperties of mixedvalencevanadates
Ca3V2O8 at high pressures palmierite type R3c
Ca3V2O8 at high pressures Onset of amorphization at about 10 GPa A. Grzechnik, Chem. Mater. 10, 1034 (1998) A. Grzechnik, J. Solid State Chem. 139, 161 (1998) palmierite type R3c
Ca3V2O8 at high pressures HP-HT synthesis of a powder material 11 GPa, 1373 K C2/m palmierite type R3c A. Grzechnik, Solid State Sciences 4, 523 (2002)
V2O5 and AxV2O5 (A = Li, Na, Cs, Ag, Mg, Ca, …; x ≤ 1) V2O5 (Pmmn) NaV2O5 (Pmmn)
V2O5 and AxV2O5 (A = Li, Na, Cs, Ag, Mg, Ca, …; x ≤ 1) NaV2O5 (Pmmn) b-Na0.33V2O5 (C2/m) Wadsley-type bronze
Pressure-induced superconductivity in b-Na0.33V2O5: TSC = 8 K, P = 8 GPa Phase transition from the charge ordered to the superconducting phase at 8 K and 8 GPa? T. Yamauchi, Y. Ueda, N. Môri, Phys. Rev. Lett. 89, 057002 (2002)
Local structures in high-pressure phases of V2O5 A. Grzechnik, Chem. Mater. 10, 2507 (1998) I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R.K. Kremer, J. Alloys Comp. 317–318, 103 (2001)
High-pressure phases of V2O5 and NaV2O5 from powder diffraction? A. Grzechnik, Chem. Mater. 10, 2507 (1998) I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R.K. Kremer, J. Alloys Comp. 317–318, 103 (2001)
High-pressure phases of b-Na0.33V2O5 from powder diffraction? High-pressure synchrotron powder diffraction at room temperature K. Rabia, A. Pashkin, S. Frank, G. Obermeier, S. Horn, M. Hanfland, C.A. Kuntscher, High Press. Res. 29, 504 (2009)
(NH4)2V3O8fresnoite Synchrotron single-crystaldiffraction (D3/Hasylab) A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011) Ambient pressure 6.90 GPa V4+ V5+ P4bm
(NH4)2V3O8fresnoite Synchrotron single-crystaldiffraction (D3/Hasylab) A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011) Ambient Ambient pressure 6.90 GPa V4+ V5+ No charge transfer P4bm P4/mbm
MV6O11 compounds (M = Na, K, Sr, Ba, Pb) P63/mmc M+V33+V34+O11 or M2+V43+V24+O11 NaV6O11: A. Grzechnik, Y. Kanke, K. Friese, J. Phys.: Condens. Matter 20, 285208 (2008) BaV6O11: K. Friese, Y. Kanke, A. Grzechnik, Acta Cryst. B65, 326 (2009) V(1)O6 M V(2)O6 V(1)O6 V(3)O5 regular Kagomé lattice Structures related to magnetoplumbite Pb(Fe3+,Mn3+)12O19
Phasetransitions in NaV6O11: low T 64.2 K 80 K TH = 243 K ║ Na+ Spontaneous magnetization with the easy axis II to [001] V4+(2)O6 V3+(1)O6 V4+(3)O5 ► A Curie-Weiss paramagnetic metal at ambient conditions ►Spontaneous magnetization is suppressed at high pressures (Tc ↓ P↑) while the TH temperature increases on compression (*) and is expected to be at 1.15 GPa and room T (*) T. Naka, T. Matsumoto, Y. Kanke, K. Murata, Physica B206/207, 853 (1995)
Phasetransitions in BaV6O11: low T Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) Ba2+ V(2)O6 V(1)O6 V(3)O5
Phasetransitions in BaV6O11: low T Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) P63mc ↔ P63/mmc 250 K Ba2+ 115 K 75 K V(2)O6 V(1)O6 V(3)O5 Specific heat
Phasetransitions in BaV6O11: low T Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) P63mc ↔ P63/mmc 250 K Ba2+ 115 K 75 K V(2)O6 No structural phase transitions (no Cmc21 phase) V(1)O6 V(3)O5 Specific heat
Phasetransitions in BaV6O11: low T Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) P63mc ↔ P63/mmc 250 K 115 K 115 K 75 K 75 K No structural phase transitions (no Cmc21 phase) Specific heat Magnetic susceptibility
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice NaV6O11
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice V(1) V(2) 290 K 2.86 Å NaV6O11
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice V(1) V(2) 290 K 2.86 Å 85.5 K NaV6O11 2.72 Å 2.99 Å
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice V(1) V(2) 290 K 2.86 Å 85.5 K 4.2 GPa NaV6O11 2.72 Å 2.99 Å 3.01 Å 2.66 Å
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice NaV6O11 BaV6O11
Phasetransitions in NaV6O11and BaV6O11: breakingtheKagomélattice NaV6O11 Hardly any bond valence changes at V sites BaV6O11 Bond valence changes at all V sites Charge transfer M V(2)O6 V(1)O6 V(3)O5
Mixed-valencevanadates MV4O8 (M = Y, Yb, Lu) 3V3+ + 1V4+ K. Friese, Y. Kanke, A.N. Fitch, A. Grzechnik, Chem. Mater. 19, 4882 (2007) K. Friese, Y. Kanke, A.N. Fitch, W. Morgenroth, A. Grzechnik, Acta Cryst. B64, 652 (2008)
→b Fe(1)O6 Fe(2)O6 Ca ↓a →b Pnam (Z = 4) a = 9.230 Å b = 10.705 Å c = 3.024 Å ↓c Orthorhombic Pnam a= 9.230 Å b=10.705 Å c= 3.024 Å Calcium ferrite type structure (CaFe2O4)
→b V(1)O6 V(3)O6 V(2)O6 V(4)O6 Yb ↓a →b P 1 21/n 1 (Z = 4) a = 9.0648(3) Å b = 10.6215(4) Å c = 5.7607(1) Å = 90.184(3)° ↓c a-YbV4O8
→b V(1)O6 V(3)O6 V(2)O6 V(4)O6 Yb ↓a →b A 21/d 1 1 (Z = 8) a = 9.030(5) Å b = 21.44(3) Å c = 5.752(2) Å = 89.911(3)° ↓c β-YbV4O8
Polytypism, twinning, and compositecrystals in MV4O8 (M = Y, Yb, Lu) Average structure Pnam P121/n1 A21/d11 α-phase β-phase
Phasetransitions in MV4O8 (M = Y, Yb, Lu) at lowtemperatures a-YV4O8 b-YV4O8 (a,b)-YV4O8 Q Magnetic susceptibility Specific heat Domain size effects: a ≈ 40-50 Å, b ≈ 500 Å
Guinier simulation of synchrotron powder diffraction data for b-YbV4O8 A21/d11 (Z = 4) β-Phase A21/d11 (Z = 4) β’-Phase 180-185 K ID31/ESRF
Isostructuralphasetransitions in a-YbV4O8 and b-YbV4O8 duetochargeordering at lowtemperatures (single-crystal data from ANKA & DESY) α-phase β-phase te Temperature [K] Temperature [K]
High-pressurebehaviour of a-YbV4O8 and b-YbV4O8polytypes? P121/n1, Z =4 A21/d11, Z =8
High-pressurebehaviour of a-YbV4O8 and b-YbV4O8polytypes? P121/n1, Z =4 A21/d11, Z =8 (DAC) SNBL/ESRF, PETRA III (DAC) SNBL/ESRF, PETRA III (0.3 mm capillary) ID31/ESRF (0.3 mm capillary) ID31/ESRF a-YbV4O8 seems to be stable at least to 16 GPa b-YbV4O8 seems to be stable at least to 10 GPa
Thefuture: an interplay of theeffects of a chemicalcomposition and of highpressureonthestructuralstability and physicalproperties of mixedvalencevanadates ►In situ high-pressure x-raystudies (diamondanvilcells and multi-anvils) Phasetransitions P-T phasediagrams Chemicalreactions ►High-pressuresynthesis ►Physicalpropertiesunderhighpressures Magnetism Transportproperties
Collaborators Karen Friese (JCNS, Jülich) Yasushi Kanke (NIMS, Tsukuba) Oleg Petracic (JCNS, Jülich) Georg Roth (RWTH Aachen University)