200 likes | 278 Views
Operation of MHSP electron multipliers at atmospheric-to-high pressures. J. F. C. A. Veloso a,b , F. Amaro a , J. M. Maia a,c , A. Breskin d , R. Chechik d , J. M. F. dos Santos a a Physics Dept., University of Coimbra, 3004-516 Coimbra, Portugal
E N D
Operation of MHSP electron multipliers at atmospheric-to-high pressures J. F. C. A. Velosoa,b, F. Amaroa, J. M. Maiaa,c, A. Breskind, R. Chechikd, J. M. F. dos Santosa aPhysics Dept., University of Coimbra, 3004-516 Coimbra, Portugal bPhysics Dept., University of Aveiro, 3810-193 Aveiro, Portugal cPhysics Dept., University of Beira Interior, 6200-001 Covilhã, Portugal dDept. of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel 2004 VCI - Vienna
The Micro-Hole & Strip Plate gas detector operation • A MSGC and GEM combination in a single plate • hole / strip pitch ~ 200 µm • 2 multiplication stages • High gain • 2D capability • 2 sided patterns on MHSP • Patterned cathode plane e.g., Veloso et al, RSI, 71(2000)2371 Veloso et al, RSI, 73(2002)488 Maia et al., NIM A 504 (2003)364 VCI - 2004
Motivation • Atmospheric pressure: • High gain multipliers in standard and noble-gas mixtures (simple to purify - no gas ageing) • X-ray & UV-Photon detectors • High pressures: • Noble gas mixtures • Dual-phase (liq/gas) detectors: Dark-matter, PET, etc • X-ray & n detectors, etc VCI - 2004
200μm MHSP production • Attempts to overcome this limitations are in progress: • Kapton/Cu etching improvement • Ceramic and others… Top Bottom • Production limitations • Low production yields • Photolithographic defects • Low voltage limit VCI - 2004
General Features • This device provides: • High gain • Fast charge collection • High energy resolution • Low ion back-flow to conversion region • Low UV photon feedback • 2-D intrinsic capability • Large field of applications VCI - 2004
Gas Gain • Gain > 5x104 @ 1 bar • Hole gain ≈ 103 • MS gain ≈ 30-50 Ar/5%Xe Veloso et al., NIMA 2004, in press. VCI - 2004
Pulse shape – rise time Ar-30%CO2 5.9 keV x-rays Fast Charge Collection • GEM+MHSP - rise time < 10 ns (charge collected at MHSP anode) • Double GEM - rise time < 20 ns (charge collected on the 2º GEM bottom) Maia et al., NIM A 504 (2003)364 VCI - 2004
Energy Resolution • Very good energy resolution: 13.7 %FWHM @ 5.9 keV • Low background Ar – 5%Xe , 1bar VCI - 2004
GEM MHSP Ion back-flow • Back-flow of avalanche-ions “dangerous” particularly in photon detectors • Induces ion-feedback! • Damage to photocathode • Reduction of 80 % ion back flow. • Compares favourably with single-GEM, where all ions flow back! Maia et al., NIM A 2004, in press. VCI - 2004
hv Monte Carlo Simulation photocathode Oleg Bouianov (LNS/MIT) simulations agree with the experiment cathode mesh VCI - 2004
The multi-GEM & MHSP photomultiplier Maia et al., NIM A 2004, in press. • High gain and low ion back flow: 2-3% • Important also in TPCs! Mörmann, NIM A, in press: 20 % for 4-GEM VCI - 2004
Gas Gain for Ar/Xe Variables: pressure; Xe-concentration VCI - 2004
Gain limited by imperfections Gas Gain for Ar/ 50mb Xe VCI - 2004
Comparative Spectra for 1 and 6 bar VCI - 2004
Pure Xenon Preliminary Results dE/E ~ 7% FWHM Bondar et al. NIM A481(2002)200: gain 104 @ 1 bar for 3-GEM VCI - 2004
Ar/Xe + He:detection possibility of thermal-n Veloso et al., IEEE-TNS 2003, submitted VCI - 2004
Conclusions • Significant ion back flow reduction in GEM cascades • Very important in photosensor or TPC applications. • The operation in noble gases at high pressures was demonstrated. • Gains > 103 for Ar/50 mbar Xe up 7 bar. • Gains ~ 103 for pure xenon at 1 and 2 bar. • Future work: • More systematic studies for different gases and higher pressures. • Improved technology will result in improved performance. VCI - 2004
3 mm 1.5 mm 1.5 mm 0.5 mm 1.5 mm 0.4 mm X-ray imaging 2-GEM + MHSP Ar/5% CH4, 1 bar x- FWHM ~250 μm y- FWHM ~200 μm • Wedge &Strip readout • Ar/5%CH4, 1 bar • G~105 at anode-strips • Ge-layer signal transmission ~15% • -> W&S signal amplitude ~7 x lower Maia et al. to be submitted to NIMA VCI - 2004
MHSP+CsI as a photosensor of a GPSC Preliminary Results • 6 Photoelectrons from CsI per primary per primary electron. photoelectron collection efficiency ~ 13 % (43%/EQ). • The RE = 16 % obtained is still far from the 8 % obtained for a standard GPSC. VCI - 2004