160 likes | 263 Views
Applications of space-borne Carbon-monoxide measurements in Atmospheric Chemistry and Air Quality Maarten Krol, Wageningen University / SRON / IMAU Jos de Laat (KNMI) & Annemieke Gloudemans & Ilse Aben (SRON) Jan Fokke Meirink (IMAU/KNMI) & Guido van der Werf (VU). Research Question.
E N D
Applications of space-borne Carbon-monoxide measurements in Atmospheric Chemistry and Air QualityMaarten Krol, Wageningen University / SRON / IMAUJos de Laat (KNMI) & Annemieke Gloudemans & Ilse Aben (SRON) Jan Fokke Meirink (IMAU/KNMI) & Guido van der Werf (VU)
Research Question How can satellite measurements help to improve our knowledge on the CO budget?
Main Sink: oxidation by the OH radical Stavrakou & Muller, 2006
SCIAMACHY CO • NIR (like TROPOMI) • Surface Sensitivity • Large Noise Errors: • Ice on detector • Weak Lines • Low NIR Albedo Averaging reduces noise related errors! IMLM v6.3 September 2003- August 2004 De Laat et al. GRL 2006 De Laat et al. GRL 2006
Biomass burning Tracer studies 1: Sampling model: at right place & time 2: Inaccurate measurements get smaller weight Gloudemans et al. GRL 2006
“Excess” CO column Considerable contribution from longe-range transport e.g. from South America
Improved Biomass Burning estimates de Laat et al., JGR, 2007
IMLM 7.3 • September 2003 - December 2005 • Over Land: CC < 20% • Over Ocean: Cloud top > 800 hPa • TM4 vs. SCIAMACHY SCIAMACHY CO over oceans
Modeled distribution consistent with SCIAMACHY observations • TM4 on average too low (NH) • Measurements over clouds!
Models needed for quantitative analysis • Data-assimilation: • estimate “uncertain parameters” (emissions, initial composition) • satellite applications: must ingest large amounts of data (SCIAMACHY, TES, MOPITT) • All data sources have their own errors and biases: bias correction is required (e.g. ECMWF) Remarks on modelling:
Ensemble Kalman Filter (e.g. CarbonTracker) • 4D-VAR (e.g. talk Ilse Aben, ECMWF) • Application to CO underway... Available techniques
Development of models and assimilation techniques important for quantitative use satellite data • SCIAMACHY CO: promising development • Sensitivity down to Earth surface • TROPOMI CO: higher resolution, more cloudfree pixels, 5x better sensitivity Conclusions TRANSCOM meeting: 2-6 June 2008, Utrecht