1 / 16

Triangle Sum Properties

Triangle Sum Properties. 4.1. To Clarify*******. A triangle is a polygon with three sides. A triangle with vertices A, B, and C is called triangle ABC. Triangles on a plane. We can find the side lengths √(-1 – 0) 2 + (2 – 0) 2 = √5 ≈ 2.2

zwi
Download Presentation

Triangle Sum Properties

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Triangle Sum Properties 4.1

  2. To Clarify******* • A triangle is a polygon with three sides. • A triangle with vertices A, B, and C is called triangle ABC

  3. Triangles on a plane • We can find the side lengths • √(-1 – 0)2 + (2 – 0)2 = √5 ≈ 2.2 • √(6– 0)2 + (3 – 0)2 = √45 ≈ 6.7 • √(6 – -1)2 + (3 – 2)2 = √50 ≈ 7.1 • This is a scalene triangle • We can also determine if it is a right triangle. (hint, look for perpendicular angles) • Slope of OP = (2-0)/(-1-0) = -2 • Slope of OQ = (3-0)/(6-0) = ½ • The lines are perpendicular and form a right angle so this is a right scalene triangle

  4. Try it out • Triangle ABC has the vertices A(0,0), B(3,3) and C (-3,3). Classify it by its sides. Then determine if it is a right triangle.

  5. Extending sides • When you extend the sides of a polygon there are new angles formed. • The original angles (on the inside) are called interior*angles. • The new angles formed are called exterior*angles.

  6. Triangle Sum Theorem • 4.1: The sum of the measures of the interior angles of a triangle is 180°

  7. b Prove it 4 5 2 • Given: Triangle ABC • Prove: m<1 + m<2 + m<3 = 180° 1 3 c a

  8. Exterior Angle Theorem • 4.2: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles

  9. Apply theorem 4.2 • Find m<JKM • Step 1: Write an equation • Step 2: Plug in x (2x – 5) = 70 + x 2(75) -5 = 145

  10. Corollary* • A corollary to a theorem is a statement that can be proved easily by using the theorem. • Corollary to the triangle sum theorem: The acute angles of a right triangle are complementary

  11. Apply Congruence 4.2

  12. Congruent Figures • Two figures are congruent if they have exactly the same size and shape. • All of the parts of one figure are congruent to the corresponding parts* of the other figure.

  13. Use properties of Congruent Figures • DEFG c= SPQR • Find x • Find y 8 10

  14. Third Angles Theorem • 4.3: If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

  15. Properties of Congruent triangles Theorem • Reflexive property: ABC is congruent to ABC • Symmetric property: if ABC is congruent to DEF then DEF is congruent to ABC • Transitive Property: If ABC is congruent to DEF and DEF is congruent to JKL, • then ABC is congruent to JKL

More Related