1 / 56

Case Management 22 nd Dec 2009

Case Management 22 nd Dec 2009. By Mudita Mittal MBBS & Kismet Baldwin MD. November Cases. NG 9 yo with Type 1 DM presented with asymmetric LE weakness, dx with non-polio enter-viral poliomyelitis MWH for rehab

Olivia
Download Presentation

Case Management 22 nd Dec 2009

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Case Management 22nd Dec 2009 By Mudita Mittal MBBS & Kismet Baldwin MD

  2. November Cases • NG 9 yo with Type 1 DM presented with asymmetric LE weakness, dx with non-polio enter-viral poliomyelitis MWH for rehab • UM 15 yo with Down’s Synd s/p MV replacement, on Warfarin, in CHF, came in with altered mental status, GI bleed, INR 4.8, found to be in MOF, declared DNR , expired a day later

  3. HPI • MC, a 12 year old with a complex medical history -Noonan’s Syndrome with short – gut syndrome, was admitted on 10/17/2009 with complaint of fever, increased fatigue and decreased appetite. • Fever was documented as high as 105.6 • Central line was repaired 2 days prior to onset of fever. • Positive sick contact : sister- H1N1 flu x 1 week

  4. Past History • PAST SURGICAL HISTORY: VSD and coarctation of Aorta repair at 1 week of age, S/P orchidopexy, surgery on both LL for limb lengthening & midgut volvulus repair • Multiple hospitalizations for central line infection • IMMUNIZATIONS: UTD • DRUG ALLERGIES: Amphotericin B and Chloral hydrate • MEDICATIONS: home TPN ,Oseltamivir x1day • DEVELOPMENT: delayed, nonverbal • SOCIAL HISTORY: lives with parents, brother, sister, dog, no smokers

  5. PHYSICAL EXAMINATION: • General appearance: In no acute distress Weight -29.2 kg. T-max 38.5 orally(ER), BP-109/49, pulse 94, RR 20, Sat 99% on room air. • HEENT: Oropharynx -small herpetic blisters on the left upper lip and tongue. Chest: clear to auscultation CVS- RRR, Crescendo-decrescendo murmur Abdominal exam: Bowel sounds present, nontender.

  6. Laboratory values

  7. Laboratory values

  8. Hospital Course • The patient remained afebrile. • Flu screen : negative. • Continued on Cefepime and Vancomycin intravenously , Oseltamivir 60 mg p.o. daily • Continued on TPN & was able to tolerate p.o as well. • Blood culture ( PERIPHERAL AND CENTRAL ) no growth on day 2 AND afebrile for >24 hrs, he was discharged home. • Home medications included Oseltamivir for 3 more days.

  9. Readmission on 10/20/09 Soon after being discharged, the pediatric GI service was notified that the patient had a positive central line culture (on 10/17/2009) which showed gram-positive cocci in pairs and chains. He was readmitted for repeat central line culture and for the initiation of vancomycin. On admission, the patient appeared well. He had no foci of infection , remained afebrile and had stable vital signs.

  10. Readmission on 10/19/09 Patient discharged home on 10/20/09 with home nursing for continuation of vancomycin. Final blood culture report ( from previous central line culture on 10/17/09)- Streptococcus viridans isolated, sensitive to Penicillin. Final blood culture report from central line culture on readmission :no growth.

  11. OBJECTIVES To discuss The Incidence of central line infections The pathogens causing Central line Infection The treatment of Central line Infections The concept of Central Line Bundle. Trends in the last decade for Central line infections

  12. Incidence • Each year, an estimated 250,000 cases of Central Line Associated Blood Stream Infections (CLABSI)occur in hospitals in the United States, • An attributable mortality of 12%--25% for each infection • The cost to the health-care system is $25,000 per episode • Nosocomial BSI prolong hospitalization by 7 days www.CDC.gov Pittet D, Tarara D, Wenzel RP. JAMA. May 25 1994;271(20):1598-1601. Soufir L et al. Infect Control Hosp Epidemiol 1999 Jun;20(6):396-401

  13. Laboratory-confirmed bloodstream infection (LCBI) Criterion 1: Recognized pathogen cultured from one or more blood cultures & Organism cultured from blood is not related to an infection at another site www.cdc.gov

  14. Laboratory-confirmed bloodstream infection (LCBI) Patient has at least one of the following signs or symptoms: fever (>38 C), chills, or hypotension AND signs and symptoms and positive laboratory results are not related to an infection at another site AND common skin contaminant (i.e., Diphtheroids [Corynebacterium sp.], Bacillus [not B. anthracis] sp., Propionibacterium sp., coagulase-negative Staphylococci [including S. epidermidis], viridans group Streptococci, Aerococcus spp., Micrococcus spp.) is cultured from two or more blood cultures drawn on separate occasions

  15. Laboratory-confirmed bloodstream infection (LCBI) Criterion 3 Patient < 1 year of age has at least one of the following signs or symptoms: fever (>38 C core) hypothermia (<36 C core), apnea, or bradycardia and signs and symptoms and positive laboratory results are not related to an infection at another site and Common skin contaminant is cultured from two or moreblood cultures drawn on separate occasions.

  16. Nosocomial Bloodstream Infections in Pediatric Patients in United States Hospitals: Epidemiology, Clinical Features, and Susceptibilities Wisplinghoff H, et al: Pediatr Infect Dis J. 2003;22:686–691.

  17. Special situations Pseudomonas aeruginosa -burn patients. S. aureus in- HIV-infected patients . Gram-negative pathogens -hematologic and non-hematologic malignancies. Hydrophilic gram-negative pathogens such as Pseudomonas spp, Acinetobacter spp, and Serratia marcescens - needleless access device.

  18. Management of the Catheter in Documented Catheter -Related CoNS bacteremia: Remove or Retain? • Methods:During the period from July 2005 through December 2007, retrospectively evaluated 188 patients with coagulase-negative staphylococcal bacteremia. Catheter-related bacteremia was confirmed by differential quantitative blood cultures (>or=3:1) or time to positivity (>2 h). RESULTS: Resolution of infection within 48 h after commencement of antimicrobial therapy was not influenced by CVC removal or exchange vs retention and occurred in 175 patients (93%). Raad I, Kassar R, Ghannam D, Chaftari AM, Hachem R, Jiang Y.Clin Infect Dis. 2009 Oct 15;49(8):1187-94

  19. Coagulase-negative Staphylococcal Bacteremia Duration of therapy did not affect recurrence. Multiple logistic regression analysis - patients with catheter retention were 6.6 times (95% CI, 1.8-23.9 times) more likely to have a recurrence than were those whose catheter was removed or exchanged (P = .004). CONCLUSIONS:CVC retention does not have an impact on the resolution of coagulase-negative staphylococcal bacteremia but is a significant risk factor of recurrence. Clin Infect Dis. 2009 Oct 15;49(8):1187-94.

  20. The Central Line Bundle Hand hygiene Maximal barrier precautions Chlorhexidine skin antisepsis Optimal catheter site selection, with subclavian vein as the preferred site for non-tunneled catheters in adults Daily review of line necessity with prompt removal of unnecessary lines

  21. Treatment

  22. Treatment

  23. Duration of therapy Treatment for CLABSI depends on Complicationsrelated to bacteremia( endocarditis) Line salvage needed. Organism type. For uncomplicated CLASBI with negative blood cultures following catheter removal the duration of therapy is usually 10 to 14 days . Persistent bacteremia >72 hours following catheter removal - treatment for at least 4 to 6 weeks.

  24. Suspected Catheter-Related Candidemia Empiric therapy for suspected catheter-related Candidemia should be administered for septic patients with the following risk factors • Total parenteral nutrition • Prolonged use of broad-spectrum antibiotics • Hematologic malignancy • Bone marrow or solid organ transplant • Femoral catheterization Colonization due to Candida species at multiple sites • NICU babies on prolonged broad-spectrum abx • Multi-system trauma patients on broad–spectrumabx

  25. Removal of catheter Severe sepsis Hemodynamic instability Endocarditis or evidence of metastatic infection Erythema or exudate due to suppurative thrombophlebitis Persistent bacteremia after 72 hours of antimicrobial therapy to which the organism is susceptible Candidial CLASBI

  26. Trends in Central line assosciated blood stream infection

  27. References Mermel, LA, Allon, M, Bouza, E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 49:1. Mermel, LA. Prevention of intravascular catheter-related infections. Ann Intern Med 2000; 132:391 Institute for Healthcare Improvement:Getting Started Kit: Prevent Central Line Infections. 2005 Soufir, L., Timsit, J., Mahe, C., et al.: “Attributable Morbidity and Mortality of Catheter-Related Septicemia in Critically Ill Patients: A Matched, Risk-Adjusted, Cohort Study , ”Infection Control and Hospital Epidemiology. 20(6):396–401, 1999. Management of the catheter in documented catheter-related coagulase-negative staphylococcal bacteremia: remove or retain?Raad I, Kassar R, Ghannam D, Chaftari AM, Hachem R, Jiang Y.Clin Infect Dis. 2009 Oct 15;49(8):1187-94. Reduction of catheter related bloodstream infections in intensive care: one for all, all for one?Helder OK, Latour JM.Nurs Crit Care. 2009 May-Jun;14(3):107-8. Review Reduction of catheter related bloodstream infections in intensive care: one for all, all for one?Helder OK, Latour JM.Nurs Crit Care. 2009 May-Jun;14(3):107-8. Review Management of bacteremia in patients undergoing hematopoietic stem cell transplantation.Castagnola E, Faraci M.

  28. References Expert Rev Anti Infect Ther. 2009 Jun;7(5):607-21. Review Seifert, H. Catheter-related infections due to gram-negative bacilli. In: Seifert H, Jansen B, Farr BM, eds. Catheter-Related Infections. New York, NY: Marcel Drekker 1997. p. 111. Lorente, L, Jimenez, A, Santana, M, et al. Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit Care Med 2007; 35:2424. Management of bacteremia in patients undergoing hematopoietic stem cell transplantation.Castagnola E, Faraci M. Seifert, H, Strate, A, Pulverer, G. Nosocomial bacteremia due to Acinetobacter baumannii. Clinical features, epidemiology, and predictors of mortality. Medicine (Baltimore) 1995; 74:340 Friedman, ND, Korman, TM, Fairley, CK, et al. Bacteraemia due to Stenotrophomonas maltophilia: an analysis of 45 episodes. J Infect 2002; 45:47. Safdar, N, Handelsman, J, Maki, DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 2004; 4:519. O'Grady, NP, Alexander, M, Dellinger, EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep 2002; 51(RR-10):1. Accessed at: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5110a1.htm.

  29. HPI • BK, a 35 week 3/7day girl born to a 20yo G1P0 mom and 21yo father • GBS unknown, HIV unknown, otherwise prenatal labs wnl • Pregnancy complications: • Polyhydramnios s/p amnioreduction • Poor biophysical profile  6/10 • Clenched hands and abnl cerebellum on routine US • Fetal MRI: Dandy-Walker malformation, posterior fossa cysts, absent inf. vermis, communicating b/lcisterna magna and 4th ventricles

  30. HPI Delivered via C-section Apgars 2,6,6 Limp, apneic dry stimulation, PPV, intubated, admitted to NICU

  31. Physical Exam Wt: 2320g (26-50%) HC: 31.5cm (26-50%) Length: 42.5cm (<10%) Gen: intubated, little spontaneous movement HEENT: wnl Resp: no spontaneous respirations, on SIMV CV: RRR, S1 S2, no murmurs Abd: soft, flat, no HSM, scattered bowel sounds GU: nl female genitalia Ext: 2+ femoral pulses, mild contractures of hips, knees, elbows, toes, L club foot, clenched hands Neuro: little spontaneous movement, occasional jerky movements or tremors Skin: no rashes

  32. Initial Labs ABG: 7.24/68/27/0/+29 CBC: 15.1 5 bands, 37 N, 43 L, 13.8 301 10 M, 43.5 Glucose: 112 Urine DRABs: negative CXR: clear lungs, hypoinflated, ETT in good position

  33. NICU Course Resp: Remained on SIMV throughout admission, trialed off of vent DOL #3 and DOL #5 CV: Stable throughout ID: Stable, admission B/C and Isolation/C negative Heme: Stable Fen/GI: NPO  day 1 TPN  reg TPN. no stools, no spontaneous urination noted since DOL #2

  34. NICU Course • Neuro: • Jerky movements, clonus, ?eye deviations • EEG: burst suppression patterns • MRI: small brain stem and cerebellar vermis, no definite cerebellar fossa, dilated 4th ventricle, marked decreased. sulci • Peds Neurology and Genetics consulted • CPK, microarray, skin biopsy, muscle biopsy plasma amino acids , urine organic acids sent • CPK 348, lactate 2.2

  35. Imaging

  36. NICU Course Ophthalmology consulted: abnl appearing fundus & optic nerve that was avascular and bland appearing, no evidence of glaucoma or micro-ophthalmos Family meetings were held on DOL #3 and 5 Life support was discontinued on DOL #6 and the patient died ~12min after ETT was removed surrounded by family

  37. Objectives Review congenital muscular dystrophy Discuss Walker-Warburg syndrome and it’s differential diagnosis Discuss factors affecting parental decision making in end of life situations

  38. Congenital Muscular Dystrophy Heterogeneous group of inherited muscle disorders Majority: muscle only, some eye and nervous system also Among the most common of autosomal recessive neuromuscular disorders Frequencies of different forms unknown Accurate clinical phenotype and comprehensive protein and genetic analysis necessary for diagnosis of specific form

  39. Currently 12 genetically defined forms of CMD • Three major groups based on class of proteins affected • Collagen IV • α-dystroglycan • Merosin (laminin α2)

  40. Walker-Warburg Syndrome Detailed descriptions pioneered by Mette Warburg and A.Earl Walker Originally HARD+E Incidence not known Present at least in Europe, Western Hemisphere, Japan Autosomal recessive inheritance

  41. Differential diagnosis: • Muscle-eye-brain disease • Fukuyama congenital muscular dystrophy • CMD without brain and eye abnormalities • Several genes implicated • Protein O-mannosyltransferase 1 and 2 (POMT1 and 2) • Fukutin related protein (FKRP) genes • Only 10-20% of cases with these gene mutations

  42. Walker-Warburg Syndrome • Major criteria: • CMD with hypoglycosylation of alpha-dystroglycan • High creatinine kinase • Anterior or posterior eye anomalies • Migrational brain defect w/type II lissencephaly and hydrocephalus • Abnormal brainstem/cerebellum

  43. Major criteria: • CMD with hypoglycosylation of alpha-dystroglycan • High creatinine kinase • Anterior or posterior eye anomalies • Migrational brain defect w/type II lissencephaly and hydrocephalus • Abnormal brainstem/cerebellum

  44. Walker-Warburg Syndrome • Workup: • Creatinine kinase • muscle biopsy • Ophthalmology exam • Prognosis: • Most children die before 3yr old, usually in first month of life • Treatment: • No specific treatment • Supportive and preventative care

  45. End of life decision making • What parents want: • Clear, accurate, timely exchange of information • Factors affecting parents’ decisions: • Meaning parents attribute to providers’ comments • Acceptance of critical nature of situation • Parents’ perception of provider humility • Providers’ level of caring

More Related