1 / 56

High Energy Neutrino Astronomy a promising decade ahead

High Energy Neutrino Astronomy a promising decade ahead. Christian Spiering, Gran Sasso, October 2002. Content. Physics Goals 2. Detection Methods and Projects 3. The next decade. 1. Physics Goals. A. High Energy Neutrino Astrophysics B. Particle Physics

adah
Download Presentation

High Energy Neutrino Astronomy a promising decade ahead

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Energy Neutrino Astronomya promising decade ahead Christian Spiering, Gran Sasso, October 2002

  2. Content • Physics Goals • 2. Detection Methods and Projects • 3. The next decade

  3. 1. Physics Goals A. High Energy Neutrino Astrophysics B. Particle Physics WIMPs, Magnetic Monopoles, Oscillations, Neutrino Mass ... C. Others Supernova Bursts, CR composition, Black Holes, ...

  4. 1 TeV Cosmic Rays Emax ~   B  L

  5. Supernova shocks expanding in interstellar medium up to 1-10 PeV Crab nebula

  6. Active Galaxies: accretion disk and jets up to 1020 eV VLA image of Cygnus A

  7. Air showers Underground Radio,Acoustic Underwater pp core AGN p blazar jet log(E2 Flux) Top-down WIMPs Oscillations GZK GRB (W&B) Microquasars etc. 3 6 9 log(E/GeV) TeV PeV EeV

  8. 1 pp core AGN (Nellen) 2 p core AGN Stecker & Salomon) 3 p „maximum model“ (Mannheim et al.) 4 p blazar jets (Mannh) 5 p AGN (Rachen & Biermann) 6 pp AGN (Mannheim) 7 GRB (Waxman & Bahcall) 8 TD (Sigl) 9 GZK Macro Baikal Amanda Mannheim & Learned, 2000 Diffuse Fluxes: Predictions and Bounds 9

  9. 2. Detection Methodsand Projects A. Underwater/Ice Cherenkov Telescopes B. Acoustic Detection C. Radio Detection D. Detection by Air Showers

  10. Underwater/Ice Cherenkov Telescopes

  11. muon cascade

  12. AMANDA Event Signatures:Muons CC muon neutrino interaction  track nm + N  m + X

  13. AMANDA Event Signatures: Cascades • CC electron and tau neutrino interaction: • (e,,) + N  (e, ) + X • NC neutrino interaction: x + N  x + X Cascades

  14. Lake Baikal First underwater telescope First neutrinos underwater 4-string stage (1996)

  15. NT-200+ Upgrade with only 22 PMTs  factor 4 in sensitivity Limit on diffuse fluxes NT-200 ne cascades 1998 •  E2 < 1.9 10-6 cm-2 s-1 sr-1 GeV

  16. km3 in Lake Baikal ? NT-200 192 PMT >15 GeV NT-200+ 214 PMT NT-Km3 ~ 1300 PMT > 100 TeV

  17. AMANDA Super-K DUMAND depth Amanda-II: 677 PMTs at 19 strings (1996-2000) AMANDA-II

  18. spase-amanda 1 km 2 km Unique: SPASE air shower arrays  calibration of AMANDA angular resolution and pointing !  resolution Amanda-B10 ~ 3.5° results in ~ 3° for upward moving muons (Amanda-II: < 2°)

  19. vertically up horizontally Atmospheric Neutrinos, 97 data ~ 300 events  AMANDA sensitivity understood down to normalization factor of ~ 40% (modeling of ice ...)

  20. Point Sources Amanda II (2000) 1328 events Preliminary limits (in units of 10-15 muons cm-2 s-1): Cas A:0.6 Mk421:1.4 Mk501:0.8 Crab: 6.8 SS433:10.5

  21. SS-433 -45 0 45 90 -90 Mk-421 / ~ 1 Expected sensitivity AMANDA 97-02 data southern sky northern sky m cm-2 s-1 4 years Super-Kamiokande 10-14 170 days AMANDA-B10 8 years MACRO 10-15 declination (degrees)

  22. Amanda 97: Upper limit on the diffuse flux of h.e. upward muon neutrinos full: experiment dotted: atmos. „AGN“ with 10-5 E-2 GeV-1 cm-2 s-1 sr-1 E2F < 0.9 10-6 GeV-1 cm-2 s-1 sr-1

  23. DUMAND test string NT-200 FREJUS AMANDA-B10 NT-200+ AMANDA-II IceCube MACRO Diffuse fluxes: theoretical bounds and experimental limits MPR W&B atmosphärische Neutrinos

  24.  event June 14 2002 real time analysis From 02/03: Iridium connection for supernova alarm Daily transmission ~ 1 GB via satellite Full data to tape (available next polar summer) Monitoring shifts in home labs

  25. IceTop AMANDA South Pole 1400 m 2400 m IceCube - 80 Strings - 4800 PMT • Instrumented volume: 1 km3 • Installation: 2004-2010 ~ 80.000 atm. per year

  26. Effective area of IceCube Aeff / km2 cos 

  27. Mediterranean Projects 2400m ANTARES 4100m 3400m NEMO NESTOR

  28. NESTOR Site: Pylos (Greece), 3800m depth towers of 12 titanium floors each supporting 12 PMTs

  29. 1 NESTOR tower + 3 DUMAND strings 7 NESTOR towers → 75 000 m² at 1 TeV

  30. 40 km Submarine cable -2400m

  31. Shore station Optical module 10 strings 12 m between storeys hydrophone Compass, tilt meter 2500m float ~60m Electro-optic submarine cable ~40km 300m active Electronics containers Readout cables ~100m Junction box anchor Acoustic beacon ANTARES Design

  32. ANTARES Performance after cuts against BG Very good angular accuracy below 3 TeV angular error is dominated by kinematics, above 3 TeV by recon- struction error (~ 0.4°) Effective area: ~ 10 000 m2 at 1 TeV ~ 50 000 m2 at 100 TeV

  33. NEMO Neutrino Mediterranean Observatory • abs. length ~70 m • 80km from coast 3400 m deep

  34. NESTOR 1991 - 2000 R & D, Site Evaluation Summer 2002 Deployment 2 floors Winter 2003 Recovery & re-deployment with 4 floors Autumn 2003 Full Tower deployment 2004 Add 3 DUMAND strings around tower 2005 - ? Deployment of 7 NESTOR towers ANTARES 1996 - 2000 R&D, Site Evaluation 2000 Demonstrator line 2001 Start Construction September 2002 Deploy prototype line December 2004 10 (12?) line detector complete 2005 - ? Construction of km3 Detector NEMO 1999 - 2001 Site selection and R&D 2002 - 2004 Prototyping at Catania Test Site 2005 - ? Construction of km3 Detector

  35. Acoustic Detection

  36. d 50s P t R Particle cascade  ionization  heat  pressure wave Maximum of emission at ~ 20 kHz Attenuation length of sea water at 15-30 kHz: a few km (light: a few tens of meters) → given a large initial signal, huge detection volumes can be achieved. Threshold > 10 PeV

  37. Renewed efforts along acoustic method for GZK neutrino detection Greece: SADCO Mediterannean, NESTOR site, 3 strings with hydrophones Russia: AGAM antennas near Kamchatka: existing sonar array for submarine detection Russia: MG-10M antennas: withdrawn sonar array for submarine detection AUTEC: US Navy array in Atlantic: existing sonar array for submarine detection Antares: R&D for acoustic detection IceCube: R&D for acoustic detection

  38. AUTEC array in Atlantic Atlantic Undersea Test and Evaluation Center 52 sensors on 2.5 km lattice (250 km2) 4.5 m above surface 1-50 kHz ! Threshold ~ 100 EeV

  39. Radio Detection

  40. e + n  p + e- e-  ... cascade negative charge is sweeped into developing shower, which acquires a negative net charge Qnet ~ 0.25 Ecascade (GeV).  for  >> 10 cm (radio) coherence  relativist. pancake ~ 1cm thick,  ~10cm  each particle emits Cherenkov radiation  C signal is resultant of overlapping Cherenkov cones  C-signal ~ E2 nsec Threshold > 10 PeV

  41. RICE Radio Ice Cherenkov Experiment South Pole firn layer (to 120 m depth) 20 receivers + transmitters UHE NEUTRINO     DIRECTION E 2 · dN/dE < 10-4 GeV · cm-2 · s-1 · sr-1 at 100 PeV 300 METER DEPTH

  42. SalSA SaltDomeShowerArray Natural Salt Domes Potential PeV-EeV Neutrino Detectors

  43. ANITA AntarcticImpulsiveTransientArray Flight in 2006

  44. Lunar Radio Emissions from Inter- actions of  and CR with > 1019 eV Gorham et al. (1999), 30 hr NASA Goldstone 70 m antenna + DSS 34 m antenna 1 nsec  moon Earth  E2·dN/dE < 10-4 GeV·cm-2·s-1·sr-1 at 1020 eV GLUEGoldstone Lunar Ultra-high Energy Neutrino Experiment Effective target volume ~ antenna beam (0.3°)  10 m layer  105 km3

  45. Measured & Predicted Radio Limits • Radio is competitive with optical km3 arrays for E >10 PeV • Required detection times are small, a benefit of the enormous volumes radio detectors can view • But: background ?? AMANDA-II 3 years expected km3 , 3 years expected

  46. Detection of neutrino induced air showers

  47. el.-magn. cascade from e hard muons from CR Far inclined showers ( thousand per year) • Flat and thin shower front • Narrow signals • Time alignment Atmosphere Hard  s Deep inclined showers (~ one peryear?) • Curved and thick shower front • Broad signals Soft  s + e.m. Atmosphere AGASA 2001: < 10-5 GeV·cm-2·s-1·sr-1 for E > 10 EeV

  48. TAU neutrinos

  49. Predicted Auger Sensitivities Comparable to 3-year optical km3 limit Mass for and e ~ 15 Gigatons sensitivity  3·10-7 GeV·cm-2·s-1·sr-1 Skimming  high acceptance at ~EeV !

  50. E > 1019 GeV 500 km 60 ° Mass up to 10 Tera-tons Area up to 106 km2 Horizontal Air Showers seen by Satellite Horizontal air shower initiated deep in atmosphere 1 - 20 GZK ev./y 5 - 50 TD ev./y

More Related