1 / 38

Puzzle Pieces: Results on b and c Spectroscopy and Decay

Puzzle Pieces: Results on b and c Spectroscopy and Decay. Hanna Mahlke-Krueger Cornell University. DAPHNE 2004. Heavy Quarkonia Puzzles. Selected. New / precision measurements. Key unanswered questions. experimental. results. BES (2S) results (XH. Mo).

aerona
Download Presentation

Puzzle Pieces: Results on b and c Spectroscopy and Decay

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Puzzle Pieces:Results on b and c Spectroscopy and Decay Hanna Mahlke-Krueger Cornell University DAPHNE 2004

  2. Heavy Quarkonia Puzzles Selected New / precision measurements Key unanswered questions experimental results BES (2S) results (XH. Mo) HQ @ TeV (M.Paulini) Hanna Mahlke-Krueger, Cornell

  3. Spin-Orbit splitting: 3PJ3P0,1,2 Spin-spin interaction: 1S3S1, 1S0 n=3 Onia States n=2 • Strongly bound qq states • Non-relativistic QM applicable (Appelquist, Politzer) • QCD analog to positronium • Provide insight into QCD • Low Q2, non-perturbative n=1 , – bb:560MeV cc: 589MeV e+e-:510-6MeV _ • Masses • Widths • Production and decay dynamics • Partly discovery, partly precision measurements Q Q Notation: n2S+1LJ J=L+S hQ          L=0 L=1 L=2 Hanna Mahlke-Krueger, Cornell

  4. Two Theoretical Approaches • Potential Model:Cf. hydrogen; Coulomb, VH(r)= - em/r VhQ(r)= – (4/3) s/r + k r • Lattice QCD (the only complete definition of QCD): recent breakthrough allows predictions at the % level; needs experimental data to verify that match this precision! • positronium energy levels, spacing and decay rates  fine-tune QED parameters quarkonium QCD Short distance,1g exch long distance Hanna Mahlke-Krueger, Cornell

  5. Why Investigate Heavy Quarkonia? Fairly non-relativistic Simplest strongly interacting systems Excellent place to study an important region of the Standard Model Gain insight to underlying interaction, QCD More convenient to handle experimentally than glueballs Hanna Mahlke-Krueger, Cornell

  6. (3770) non-DD decays _ Experimental Data (1S)J/X X(3872) (1,2,3S)B Data samples J/,(2S)pp, 2body hadronic (2S) decays Transitions ,,,0, C’ Hanna Mahlke-Krueger, Cornell

  7. Producing quarkonia n=1 n=2 n=3 • e+e- colliders, e+e-*qq: can only directly produce states coupling to *, i.e. n3S1 (J/, ) with a tiny admixture of n3D1– • two realphoton collisions: J=0,2 ([b,c], [b,c][0,2]) • hadron colliders any energy, no quantum number restrictions, but not as clean • transition from higher up, e.g. (2S)c0 n=4 Hanna Mahlke-Krueger, Cornell

  8. Data Samples Datasets as of spring 2004 J/ 106 ’ ’’10 (1S) 106 • Cross section falls as n increases • Additional data samples for special purposes (2S) (3S) Hanna Mahlke-Krueger, Cornell

  9. X(3872) Spectroscopy Transitions ,,,0, C’ Hanna Mahlke-Krueger, Cornell

  10. Current Experimental Information on c KSK c c’ Belle e+e-J/(X) c’ 0 c CBAL PRL48(1982)70, BaBar hep-ex/0311038, Belle PRL89(2002)102001, PRL 89(2002)142001, CLEO PRL 92(2004)142001 Hyperfine splitting Recently observed in 3 different ways: B  K (KSK+-) Belle e+e-  J/(X) (Belle)   KSK (CLEO, BaBar) Old result (c’X, m=3594) directly ruled out by CLEO. m(c’)  3638 MeV m(’)-m(c’) (MeV) New 2S splitting about half as big, ˜48MeV m(2S)/ m(1S)0.5. Theory needs to accommodate this! Hanna Mahlke-Krueger, Cornell

  11. Peak in B± K±(+-J/), m = (3872.0 0.60.5) MeV,  < 2.3 MeV (90%CL) Belle Also in pp(+-J/)X: m = (3871.3 0.70.4) MeV CDFm = (3871.8 3.13.0) MeV D0 What is its nature? Study production and decay mechanisms! • Charmonium state? • 13D2,3=2--,3-- ? (Xc1,2)/(XJ/)>2 • See <0.89/1.1 (Belle) • 1++ ? (XJ/)/(XJ/)>1 • See 0.4 (Belle) • 1-- ? Look in ISR production (next slide) • DD* molecule?mD+mD* = 3871.5±0.5 MeV • Look for X D(D) • D0D00 BR’s< ~510-5(Belle) not inconsistent • Look for X 00J/  J/ component? • Exotic state? X(3872) – a cc state? 3872 MeV Belle Belle PRL91:262001,2003,hep-ex/0405014; CDF hep-ex/0312021; D0 hep-ex/0405004; BaBar hep-ex/0402025, BES hep-ph/0310261 Hanna Mahlke-Krueger, Cornell

  12. ISR (JPC=1--) CLEO prelim: ee B(X +-J/) < 6.8eV (or, <1/100(2S) production rate in ISR for same BJ/) BES: ee B(X +-J/) < 10eV (22.3pb-1 at s=4.03GeV) 2 (JPC=0±+, 2±+, …) X(3872) CLEO results on X(3872)CLEOIII, 15fb-1, s=9.46…11.30GeV, X(3872)+-J/, J/ℓ+ℓ- X(3872) CLEO prelim: (2J+1) B(X -+J/) <16.7eV (or, <1/10 the c production rate in ) Hanna Mahlke-Krueger, Cornell

  13. Transitions Transition Options • Hadronic: • 0,,, +- - no kaons; splitting too small • Photonic: • E1: L=1, S=0 • M1: L=0, L=1 Hanna Mahlke-Krueger, Cornell

  14. No charge involved: two charged pions or neutral particles 0 0 Single 0 transitions isospin suppressed ,  are ‘‘rare’’ Soft process. Hadronic Transitions   Q Q Q Q 0 Q Q Q Q Hanna Mahlke-Krueger, Cornell

  15. bJ (1S):1st non- hadronic transition in bb CLEO m(+-0) hep-ex/0311043, acc by PRL (3S)(1S)+X: • X is photon, (1S)ℓ+ℓ-+-0 distribn peaks at  • Fit for (3S)bJ, bJ (1S), J=1,2 • B(b1(1S))=(1.63 )% • B(b2(1S))=(1.10 )%1. substantial, 2. equal Voloshin hep-ph/0304165: r2/1=1.3±0.3 E MC ’’ b2’ - 0.31 - 0.15 +0.32 +0.11 MC ’’b1’ +0.35 +0.16 - 0.28 - 0.10 Hanna Mahlke-Krueger, Cornell

  16. hep-ex/0403023 1 2 (2S)J/  m()/GeV2 B(’0J/)=(1.430.140.13)10-3 14% relative B(’J/) =(2.980.090.23)% 8% relative • Predictions for B(’0J/)/B(’J/), B(’J/)/B((2S)), B(’J/)/B((3S)), … see Prof. Mo’s talk • Neutral dipion transitions in hep-ex/0404020… (3S) 0/ℓ+ℓ-, 0/?Not seen, UL @ ‰ level 0 BES m(J/h)/GeV2 ee  m()/GeV2 Hanna Mahlke-Krueger, Cornell

  17. m(+-+-)/GeV (2S) Do we understand (2S)J/ ? J/ Charged dipion transitions often used as normalizing mode; single most precise measurement: (32.31.4)% (BES ’02) Expect B((2S)00J/)/B((2S)+-J/)=0.5from isospin.Phase space correction: a few %. Others?? • Experiment:(PDG: B((2S)00J/) = (18.91.1)%)B((2S)00J/)/B((2S)+-J/)=0.5700.0090.026 4M (2S) BESI, hep-ex/0404020 B((2S)+-J/)=0.3610.0150.037BaBar, radiative returns, 89fb-1 ~(4S) data, hep-ex/0312063 • Neutral BR too high? Charged BR too low? Expectation off? BaBar 1 2 3 4 Hanna Mahlke-Krueger, Cornell

  18. (3770) non-DD (1S)J/X (1,2,3S) B Decay J/,(2S)pp, 2body hadronic (2S) decays Hanna Mahlke-Krueger, Cornell

  19. D- (3770) (2S)? D+ Are there (3770) non-DD decays? _ 80% _ m((3770))>2m(D) • s(y’’DD)=5.0±0.5nb < s(y’’hadrons)= 7.9±0.6nb • Can the deficit be confirmed? • BES single tag Moriond 04:s(y’’DD)=5.78±0.11±0.38 nb • CLEO-c prelim double tag:s(y’’DD)=6.51±0.44±0.39 nb • Modern s(y’’hadrons) would be good… • Where would a 20% deficit of tot=24MeV show up? Rosner: rad decays at most 600 keV, J/ 100keV. Does (2S)(3770) mixing happen? Do modes expected from J/ that are rare on (2S) mix away? Understanding (2S) will help with (3770)! (Don’t expect BIG rates.) _ MarkIII PRL 60(1988)89 CBAL CALT-68-1150 (1984), MarkII SLAC-219 (1979) Hanna Mahlke-Krueger, Cornell

  20. (1,2,3S) B Total decay width: tot= had + ee +  + ? • Total widths: • 1S total widths keV, big portions not accounted for by exclusive decays measured thus far • Relative precision on total width: • [’,’’]: 3.4%, 16.9%, 13.3%, [’,’’]: 5.7%, 7.9%, 11.4% • Leptonic decay widths: • confront LQCD percent level predictions test lepton universality • compare ℓℓ relative to ggg,gg, qq • narrow resonances: tot = ℓℓ / Bℓℓ, or ee/B • (2S) scan data published last year (BES) • (1,2,3S): ee under study; B preliminary results (CLEO) Hanna Mahlke-Krueger, Cornell

  21. ee(2S) ee(1S) • LQCD predictions Leptonic (1,2,3S) Widthee ! Strategy: External input Hope to improve from 2/4/9%  2-3%. Hanna Mahlke-Krueger, Cornell SLAC 11/25/03 Hanna Mahlke-Krueger, Cornell 41

  22. B((1,2,3S)+-)Results • Desired precision reached (LQCD!) • B((2,3S)) larger than previous results  lower tot Hanna Mahlke-Krueger, Cornell

  23. BESII, 58M J/: B(J/pp)= (2.26  0.01  0.14)10-3 Angular distribution: dN/dcosX=1+cos2X J/,(2S)pp, J/XbXb, X=p, [1] Brodsky, Lepage, PRD24(1981)2848 [2] Claudson et al., PRD25(1982)1345 [3] Carimalo, IntJModPhysA2(1987)245 [4] hep-ex/0402034, PLB424(1998)213 Hanna Mahlke-Krueger, Cornell

  24. _ _ c[0,1,2]pp,  from (2S) CJ _ - c[0,1,2] - _ c1 3511 c2 3556 • COM needed to describe P-wave quarkonium decays cpp • Based on c[0,1,2]pp meas’t, generalized to , expect BR(cJ/cJpp) =1/2 J=1,2 • c[0,1,2] see excess BESII: c[0,1,2]pp, within 1 of previous measurement and pp cJJ/: confirm excesshep-ex/0401011 & hep-ex/0304012, BESII c0 3415 _ _ _ _ _ _ c[0,1,2]pp c1 3513 c0 3414 c2 3549 Hanna Mahlke-Krueger, Cornell

  25. _ CS CO b b b b c c,c c c c (1S) J/X _ CLEO preliminary CDF pp  J/,(2S)X rates  color octet mechanism: cc in CO, become CS by radiating off a soft gluon. Problems with other data… More information needed to distinguish production mechanisms. • (1S)J/X is gluon rich envt; CO preferred • Example: x spectrum. CO peaks near x=1; modifications due to multiple soft g emission scaled J/ momentum x; qq and continuum subtracted (use (4S) as continuum) _ Hanna Mahlke-Krueger, Cornell

  26. Charmonium production in (1S) decays _ CLEO preliminary (e+e-  qq  J/+X)=… …(1.470.100.13) pb (Belle) …(2.520.210.21) pb (BaBar) …(1.90.2(stat)) pb (CLEO prelim) B((1S)J/+X) = (6.40.40.6)10-4 CS: 5.9 10-4, CO: 6.2 10-4 • 90% is ggg, gg • Includes feed-down from (1S) (2S),c0,1,2+Y  J/+X+Y. Identify through (2S)  +-J/, CJ  J/ No clear conclusion on CS vs CO possible so far. Hanna Mahlke-Krueger, Cornell

  27. 2body hadronic decays Annihilation into 3g: QQ decaysinto light hadrons Q Q Radiative decay:  Annihilation into a photon: q,l- Q Q * Q* Q Q q,l+ background Dissociation: e+ q,l- q,l+ e- Hanna Mahlke-Krueger, Cornell

  28. 12% J/ 3.1GeV “The 14% rule” _ (2S) 3.7GeV If mechanism is cc annihilation  decay rate  |(0)|2 Compare with e+e- production: Complications (and there are more): Powers of S at mJ/, m(2S)0.845 hep-ph/09910406 Form factor ECM dependence? 3.6862/3.0972=1.4 Non-relativistic corrections Interference with continuum Prof. Mo’s talk Only for cc*, not ccggg?(Gerard/Weyers) Compliance within a factor of two: “agreement” Hanna Mahlke-Krueger, Cornell

  29. Two-body hadronic (2S) decays 12% 1/2 2 • (2S) BR’s: Not many are precisely measured • (2S), 12% rule: Nail down systematic deviation of certain channels? Experimentally, situation is unclear Theoretically, even more than unclear: Add’l effects in J/? (2S)? Expectation? • Good understanding of continuum background and impact of interference is crucial! Hanna Mahlke-Krueger, Cornell

  30. Branching Fraction Ratio: (2S)/J/ VP • , K*K measured • IV channels ~obey 12% rule • b1 and +-, too; f2 almost VP final states + some others CLEO data, 3M (2S), 20pb-1 @ s=3.67GeV Measure branching fractions relative to B((2S)+-J/, J/+-) BF’s range from 10-5 to 10-3 Background subtracted, not corrected for interference Good statistical power of continuum sample is key! IV IV Biggest violators: +-0, , K*+K-,  Hanna Mahlke-Krueger, Cornell

  31. stat signif in  B((2S)X) in 10-6 stat syst Channel Hadronic (2S) BR’s 5.5pb-1(3M) (2S), 20pb-1@3.67 GeVBRs not corrected for interference CLEO preliminary B(f0+-) Hanna Mahlke-Krueger, Cornell

  32. hep-ex/0402013 J/+-0 BES m(+0) m(+-) m(-0) m CLEO preliminary (2S)+-0 production (??) m Hanna Mahlke-Krueger, Cornell

  33. Interference …. …. (3770) non-DD? 00/+- trans hc, hb, b() ? 12% rule? Summary Transitions , , ,0,  X(3872) (1,2,3S) B J/,(2S)pp, 2body hadronic(2S) decays C’ (1S)J/X Hanna Mahlke-Krueger, Cornell

  34. BACKUP

  35. BESII CLEO-c y(3770) p+p-J/y • 5.2±0.2 pb-1, (4.5±0.4)104y’’decays • efficiency: 37% • < 4.75 events @ 90%CL BR(y(3770)p+ p-J/y(1S)) • <0.26% @90% CL e+e-→ g y(2S)(*) , y(2S) → p+p-J/y M(ℓ+ℓ-) GeV hep-ex/0307028 • 28 pb-1(3.783-3.885GeV), 1.85105y’’decays • efficiency: 16% • 17.8±4.8 events incl 6.0±0.8 bgd(0 from cont)BR(y(3770)→p+p-J/y) • = (0.34±0.14±0.08) % • = (80 ±32±21) keV 232 events ? e+e- → g y(2S) y(2S) → p+p-J/y Ecm -Mass recoiling p+p- T. Skwarnicki, QWG03 Hanna Mahlke-Krueger, Cornell

  36. off- res. MC: e+e-+-  data B((1,2,3S)+-) • Goal: 3-4% precision on B • Gives tot  ee • 1.0/1.2/1.2 fb-1 on-resonance + 0.2/0.4/0.2 fb-1 off-resonance • Backgrounds: continuum, cascade decays such as (3S)b0(2S) , cosmic ray events • Good understanding of data on- res. MC: (1S)+-w/o FSR data Hanna Mahlke-Krueger, Cornell

  37. CLEO-c preliminary CLEO-c 1,21S0 lines c BR((2S)C(2S)): 1.5% 1.0% 0.5% 0.0% c’ CBAL • c(1S) seen @ 8.2 • c(2S) in the CBAL preferred region ruled out 500 600 700 800E (MeV) CLEO-c preliminary 80 85 90 95 E (MeV) Hanna Mahlke-Krueger, Cornell

  38. (2S) Branching Fractions CLEO data, 3M (2S), 20pb-1 @ s=3.67GeV Measure branching fractions relative to B((2S)+-J/, J/+-) Convert using B((2S)+-J/) =(32.31.4)% and B(J/+-) =(5.880.10)% Background subtracted, not corrected for interference • A plot VP Hanna Mahlke-Krueger, Cornell

More Related