1 / 17

Structured-Illumination Quantitative Phase Microscopy

Structured-Illumination Quantitative Phase Microscopy . Sri Rama Prasanna Pavani, Ariel Libertun, Sharon King, and Carol Cogswell Micro Optical – Imaging Systems Laboratory University of Colorado at Boulder http://moisl.colorado.edu. Phase Imaging - What?.

ainsley
Download Presentation

Structured-Illumination Quantitative Phase Microscopy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Structured-Illumination Quantitative Phase Microscopy Sri Rama Prasanna Pavani, Ariel Libertun, Sharon King, and Carol Cogswell Micro Optical – Imaging Systems Laboratory University of Colorado at Boulder http://moisl.colorado.edu Pavani et al - Univ. of Colorado, Boulder

  2. Phase Imaging - What? • Transparent objects (phase objects) modulate only the phase of light • Square law detectors do not detect phase modulations • Convert phase modulations into “detectable” intensity modulations Bright field Pavani et al - Univ. of Colorado, Boulder

  3. Convert phase modulations into “detectable” intensity modulations. Phase imaging - How? Digital Holography Phase contrast Diff. Interference Contrast • Quantitative phase after reconstruction • Thick phase objects • Single image • Vibration sensitive • Phase wrapping • Quantitative phase for weak phase objects • No phase wrapping • Halo and shading-off • Only for thin objects • Quantitative phase after reconstruction • No phase wrapping • Polarization sensitive • Only for thin objects • Multiple images Pavani et al - Univ. of Colorado, Boulder

  4. Our method - Why? • Quantitative phase imaging Purpose: • Thick, partially absorbing samples • Polarization insensitive Applicability: • Single image • Non-scanning (wide field) • Non-Iterative Speed: • Incoherent source • Inexpensive Miscellaneous: Pavani et al - Univ. of Colorado, Boulder

  5. Our method • Amplitude mask in the field diaphragm • Pattern is imaged on the sample • Phase object distorts the pattern • Record the distorted pattern • Analytical formula calculates phase Vs 0.2 0.1 (mm) 0.4 0.2 0 0.2 0.4 (mm) (mm) Pavani et al - Univ. of Colorado, Boulder

  6. Our method – 1D 2D dot shift 1D dot shift Pavani et al - Univ. of Colorado, Boulder

  7. Our method – 1D • Analytically relate deformation to the optical path length • Consider a 1D phase object p(x) • Ray R from point A, after refraction, appears as if it originated from B • Deformation t(x) is the distance between A and B Normal Tangent n2 p(x) n1 A B t(x) Pavani et al, “Quantitative bright field phase microscopy”, to be sent to Applied Optics Pavani et al - Univ. of Colorado, Boulder

  8. Our method – 2D 1D deformations After 1D integrations Quantitative Phase 2D deformation Pavani et al, “Quantitative bright field phase microscopy”, to be sent to Applied Optics Pavani et al - Univ. of Colorado, Boulder

  9. Simulation X 100 18 9 0 5 0 -5 Calculated Phase Quadratic phase 50 25 0 50 25 0 200 100 200 100 After 1D integrations 1D deformations X 100 18 9 0 5 0 -5 0 100 200 0 100 200 Error 8 4 0 -4 -8 (nm) Error Peak error is 5 orders less than peak phase 0 100 200 Pavani et al - Univ. of Colorado, Boulder

  10. Experimental Results Dot shift X,Y Deformations Original pattern 3 0 -3 360 180 0 240 480 Deformed pattern 3 0 -4 360 180 16.54 0 240 480 Quantitative phase 40 30 20 10 0 Object: Drop of optical cement 360 180 Pavani et al - Univ. of Colorado, Boulder 480 240 0

  11. Experiment - Accuracy Profilometer Our method Pavani et al - Univ. of Colorado, Boulder

  12. Conclusion • Quantitative phase imaging in a brightfield microscope. • Phase is calculated from deformation using an analytical formula. • Inexpensive non-scanning, non-iterative, single-image technique. Pavani et al - Univ. of Colorado, Boulder

  13. Acknowledgements • Prof. Rafael Piestun • Prof. Gregory Beylkin • Vaibhav Khire CDMOptics PhD Fellowship National Science Foundation Grant No. 0455408 Pavani et al - Univ. of Colorado, Boulder

  14. References • J. W. Goodman, Introduction to Fourier Optics, (Roberts & Company, 2005) • M Pluta, Advanced Light Microscopy, vol 2: Specialised Methods, (Elsevier, 1989) • M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy” Journal of Microscopy 214 (1), 7–12 (2004) • C. Preza, "Rotational-diversity phase estimation from differential-interference-contrast microscopy images," J. Opt. Soc. Am. A 17, 415-424 (2000) • Sharon V. King, Ariel R. Libertun, Chrysanthe Preza, and Carol J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007) • E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999) • P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005) • M. Born and E. Wolf, Principles of Optics, ed. 7, (Cambridge University Press, Cambridge, U.K., 1999). • A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, (IEEE Press, New York, NY, 1988) • A. C. Sullivan, Department of Physics, University of Colorado, Campus Box 390, Boulder, CO 80309, USA and R. McLeod are preparing a manuscript to be called “Tomographic reconstruction of weak index structures in volume photopolymers.” • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al., “Optical coherence tomography,” Science1991 Nov 22;254(5035):1178-81. • A. F. Fercher, C. K. Hitzenberger, “Optical coherence tomography,” Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002) • A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66 239–303 (2003) • M. R. Ayres and R. R. McLeod, "Scanning transmission microscopy using a position-sensitive detector," Appl. Opt. 45, 8410-8418 (2006) • Barone-Nugent, E., Barty, A. & Nugent, K. “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002). • J. Hartmann, "Bemerkungen uber den Bau und die Justirung von Spektrographen," Z. Instrumentenkd. 20, 47 (1900). • I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, second edition Wiley, New York, 1992, pp. 367–396. • R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971). • V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105- (1984) • M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of Microscopy 198 (2), 82–87 (2000) • M. D. Feit and J. A. , J. Fleck, "Light propagation in graded-index optical fibers (T)," Appl. Opt. 17, 3990- (1978) • Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision, Volume I. Addison-Wesley, 1992. pp. 28-48. Pavani et al - Univ. of Colorado, Boulder

  15. Applications and Future work • Industrial inspection, biological imaging • Extracting information from axial deformation • Extending the depth of field of the system • Fabrication of an amplitude mask with higher spatial resolution Pavani et al - Univ. of Colorado, Boulder

  16. Our method – How? 1 Dimensional analysis (from geometry) (Snell’s law, ) (Taylor expansion) C = 2 (C2 – C1) Pavani et al - Univ. of Colorado, Boulder

  17. Our method – How? M 2 Dimensional analysis N and Apply 1D solution along x and y to obtain P2 Pavani et al - Univ. of Colorado, Boulder

More Related