1 / 32

Welcome

Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated Learning Center (ILC) 10:00 - 10:50 Mondays, Wednesdays & Fridays. Welcome. http://www.youtube.com/watch?v=oSQJP40PcGI. Lab sessions.

Download Presentation

Welcome

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Statistics for the Social SciencesSBS200, COMM200, GEOG200, PA200, POL200, or SOC200Lecture Section 001, Fall, 2014Room 120 Integrated Learning Center (ILC)10:00 - 10:50 Mondays, Wednesdays & Fridays. Welcome http://www.youtube.com/watch?v=oSQJP40PcGI

  2. Lab sessions Labs • Remember: • Bring electronic copy of your data (flash drive or email it to yourself) • Your data should have correct formatting • See Lab Materials link on class website to double-check formatting of excel is exactly consistent

  3. Schedule of readings Before next exam (September 26th) Please read chapters 1 - 4 in Ha & Ha textbook Please read Appendix D, E & F onlineOn syllabus this is referred to as online readings 1, 2 & 3 Please read Chapters 1, 5, 6 and 13 in Plous Chapter 1: Selective Perception Chapter 5: Plasticity Chapter 6: Effects of Question Wording and Framing Chapter 13: Anchoring and Adjustment

  4. A noteon doodling Reminder

  5. Use this as your study guide By the end of lecture today9/15/14 • Correlational methodology • Positive, Negative and Zero correlation • Characteristics of a distribution • Central Tendency • Dispersion • Shape

  6. Homework due – Wednesday (September 17th) No new homework – refine correlations worksheet

  7. Review of Homework Worksheet Notice Gillian asked 1300 people .10 x 1,000,000 = 100,000 130/1300 = .10 10 .10 100,000 .08 8 80,000 .10x100=10 25 .25 250,000 35 .35 350,000 22 .22 220,000 130+104+325+455+286=1300

  8. Review of Homework Worksheet 10 .10 100,000 .08 8 80,000 25 .25 250,000 35 .35 350,000 22 .22 220,000

  9. Review of Homework Worksheet

  10. Negative Strong Review of Homework Worksheet Down -.9 9 8 7 6 Dollars Spent 5 4 3 2 1 50 10 30 20 40 Age

  11. Negative Strong Review of Homework Worksheet Down -0.9227 =correl(A2:A11,B2:B11) =-0.9226648007

  12. Negative Strong Review of Homework Worksheet Down -0.9227 This shows a strong negative relationship (r = - 0.92) between the amount spent on snacks and the age of the moviegoer Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Correlation r (actual number) =correl(A2:A11,B2:B11) =-0.9226648007

  13. Scatterplot displays relationships between two continuous variables Correlation: Measure of how two variables co-occur and also can be used for prediction Range between -1 and +1 The closer to zero the weaker the relationship and the worse the prediction Positive or negative

  14. Correlation

  15. Correlation - How do numerical values change? http://neyman.stat.uiuc.edu/~stat100/cuwu/Games.html http://argyll.epsb.ca/jreed/math9/strand4/scatterPlot.htm Let’s estimate the correlation coefficient for each of the following r = +.80 r = +1.0 r = -1.0 r = -.50 r = 0.0

  16. Positive correlation: as values on one variable go up, so do values for other variable Negative correlation: as values on one variable go up, the values for other variable go down Number of bathrooms in a city and number of crimes committed Positive correlation Positive correlation

  17. Correlation does not imply causation Is it possible that they are causally related? Yes, but the correlational analysis does not answer that question What if it’s a perfect correlation – isn’t that causal? No, it feels more compelling, but is neutral about causality Number of Birthdays Number of Birthday Cakes

  18. Linear vs curvilinear relationship Linear relationship is a relationship that can be described best with a straight line Curvilinear relationship is a relationship that can be described best with a curved line

  19. This shows a strong positive relationship (r = 0.97) between the appraised price of the house and its eventual sales price r = +0.97 Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number)

  20. r = +0.97 r = -0.48 This shows a moderate negative relationship (r = -0.48) between the amount of pectin in orange juice and its sweetness Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number)

  21. Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) This shows a strong negative relationship (r = -0.91) between the distance that a golf ball is hit and the accuracy of the drive r = -0.91

  22. Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) This shows a moderate positive relationship (r = 0.61) between the length of stay in a hospital and the number of services provided r = 0.61 r = -0.91

  23. r = +0.97 r = -0.48 r = 0.61 r = -0.91

  24. Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Variable name is listed clearly Both axes have real numbers listed Both axes and values are labeled This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). 48 52 5660 64 68 72 Height of Mothers (in) 48 52 56 60 64 68 72 76 Height of Daughters (inches)

  25. Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Variable name is listed clearly Both axes have real numbers listed Both axes and values are labeled This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). 48 52 5660 64 68 72 Height of Mothers (in) 48 52 56 60 64 68 72 76 Height of Daughters (inches)

  26. Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Variable name is listed clearly Both axes have real numbers listed Both axes and values are labeled This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). 48 52 5660 64 68 72 Height of Mothers (in) 48 52 56 60 64 68 72 76 Height of Daughters (inches)

  27. Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Variable name is listed clearly Both axes have real numbers listed Both axes and values are labeled This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). 48 52 5660 64 68 72 Height of Mothers (in) 48 52 56 60 64 68 72 76 Height of Daughters (inches)

  28. Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Variable name is listed clearly Both axes have real numbers listed Both axes and values are labeled This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). 48 52 5660 64 68 72 Height of Mothers (in) 48 52 56 60 64 68 72 76 Height of Daughters (inches)

  29. Break into groups of 2 or 3 Each person hand in own worksheet. Be sure to list your name and names of all others in your group Use examples that are different from those is lecture 1. Describe one positive correlation Draw a scatterplot (label axes) 2. Describe one negative correlation Draw a scatterplot (label axes) 3. Describe one zero correlation Draw a scatterplot (label axes) 4. Describe one perfect correlation (positive or negative) Draw a scatterplot (label axes) 5. Describe curvilinear relationship Draw a scatterplot (label axes)

  30. Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Variable name is listed clearly Both axes have real numbers listed Both axes and values are labeled This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). 48 52 5660 64 68 72 1. Describe one positive correlation Draw a scatterplot (label axes) Height of Mothers (in) 2. Describe one negative correlation Draw a scatterplot (label axes) 48 52 56 60 64 68 72 76 Height of Daughters (inches) 3. Describe one zero correlation Draw a scatterplot (label axes) 4. Describe one perfect correlation (positive or negative) Draw a scatterplot (label axes) 5. Describe curvilinear relationship Draw a scatterplot (label axes)

  31. Thank you! See you next time!!

More Related