800 likes | 1.07k Views
TEMA V. ESQUEMA GENERAL. DISEÑOS EXPERIMENTALES MULTIGRUPO. Concepto.
E N D
ESQUEMA GENERAL DISEÑOS EXPERIMENTALES MULTIGRUPO
Concepto Los diseños multigrupo, de uso frecuente en ciencia psicológica y social, son estructuras de una sola variable independiente a tres o más valores o niveles. Al seleccionar más de dos valores de la variable independiente o causal, es posible extraer la relación funcional entre la variable independiente y dependiente del experimento. Por dicha razón, estas estructuras se conocen por experimentos funcionales o paramétricos (Plutchik, 1968).
Diseño multigrupo al azar El diseño multigrupo completamente al azar requiere la asignación aleatoria de los sujetos de la muestra a los distintos grupos, sin restricción alguna. Se trata de una extensión del diseño de dos grupos, ya que en esta situación se eligen de la variable de tratamiento más de dos valores o condiciones.
Tratamientos A1 A2… Aj … Aa .………… Asignación aleatoria Muestra experimental S u j e t o s S u j e t o s S u j e t o s
Prueba de significación general ANOVA unidireccional Si la V. Independiente es categórica Comparaciones múltiples Si la V. Independiente es cuantitativa Análisis de tendencias
Caso paramétrico. Ejemplo Supóngase que se pretende probar si la cantidad de repasos es una variable decisiva en la retención (memoria de recuerdo), para un conjunto de palabras monosílabas de igual valor asociativo. De la variable independiente o variable repaso se seleccionan los siguientes valores: presentación de la lista sin repaso (condición A1), dos presentaciones de la lista, siendo la segunda presentación un repaso (condición A2), tres presentaciones y dos repasos (condición A3) y, por último, cuatro presentaciones y tres repasos (condición A4). ..//..
Se instruye a los sujetos que lean en voz alta cada uno de los ítems presentados, a un ítem por segundo. Al terminar las lecturas, los sujetos realizan una prueba de memoria de recuerdo consistente en restituir o recuperar de la memoria la mayor cantidad de ítems. La medida de la variable dependiente es la cantidad de respuestas o ítems correctamente recordados. Asumiendo que cada ítem tiene la misma dificultad de recuerdo, se considera que la escala de medida es de intervalo.
Modelo de prueba estadística Paso 1. La hipótesis de nulidad asume que las medias de los grupos experimentales proceden de una misma población y, por consiguiente, son idénticas: H0: μ1 = μ2 = μ3 = μ4 Paso 2. La hipótesis experimental asume que la cantidad media de palabras recordadas variará positivamente en función de la cantidad de repasos. En términos estadísticos H1: μ1μ2, o μ1μ3, o μ1μ4, o μ2μ3, o μ2μ4, o μ3μ4 H1: por lo menos una desigualdad
Paso 3. Se aplica una prueba de significación general o prueba ómnibus, cuyo estadístico es la F de Snedecor. El nivel de significación de α = 0.05. El tamaño de la muestra experimental y las submuestras de tratamiento son: N = 20 y n = 5. F0.95(3/16) = 3.24 Paso 4. Tras la ejecución del experimento, se calcula el valor empírico de F, a partir de la matriz de datos.
DISEÑO MULTIGRUPO TRATAMIENTOS A1 A2 A3 A4 2 1 3 4 2 4 3 5 7 6 6 7 8 7 5 9 7 8 9 8 12 2.4 25 5 33 6.6 41 8.2 111 5.5 Totales: Medias:
Especificación de modelo del ANOVA Yij= la puntuación del i sujeto bajo la j condición experimental o tratamiento. μ = la media global de los datos del experimento. αj = μj - μ, es el efecto o impacto de j nivel de la variable de tratamiento A. εij = Yij - μj, es el error experimental asociado al i sujeto bajo el j tratamiento. Para que el modelo sea válido, se especifican las siguientes condiciones: Σαj= 0 y εij NID(0, σ²)
Cálculo de las sumas de cuadrados SCtotal = (2)² + (1)² + ... + (8)² - (111)²/20 = 731 - 616.05 = 114.95 SCtrat. = [(12)²/5 + (25)²/5 + (33)²/5 + (41)²/5] - (111)²/20 = 707.80 - 616.05 = 91.75 SCerror = (2)² + (1)² + ... + (8)² - [(12)²/5 + (25)²/5 + (33)²/5 + (41)²/5 ] = 23.20
F.V. SC g.l CM F p Trat (A) Error (S/A) 91.75 23.20 (a-1)=3 a(n-1)=16 30.58 1.45 21.08 <0.05 Total (T) 114.95 an-1=19 F0.95(3/16) = 3.24 CUADRO RESUMEN DEL AVAR: DISEÑO MULTIGRUPO
Modelo de prueba estadística Paso 5. Dado que el valor observado de F es mayor que el valor teórico al 5% y en función de los grados de libertad correspondientes, se rechaza la hipótesis de nulidad y se acepta la hipótesis alternativa o hipótesis experimental a este nivel de significación.
Supuesto de homogeneidad Igualdad de las variancias de los grupos: H0: σ1² = σ2² = ... = σj²
Prueba de la homogeneidad Hartley: cuando n por grupo es constante mayor de las variancias s²mayor Fmax = ----------------------------------- = ------------- menor de las variancias s²menor
Cálculo de Fmax Cálculo de las variancias de los grupos de tratamiento ───────────────────────────────────────────────── Grupo de tratamiento SC g.l. s² ───────────────────────────────────────────────── Primero (2²+1²+...+2²)-(12²/5) = 5.2 n-1=4 5.2/4 = 1.3 Segundo (4²+3²+...+6²)-(25²/5 ) = 10.0 n-1=4 10/4 = 2.5 Tercero (6²+7²+...+5²)-(33²/5) = 5.2 n-1=4 5.2/4 = 1.3 Cuarto (9²+7²+...+8²)-(41²/5) = 2.8 n-1=4 2.8/4 = 0.7 ───────────────────────────────────────────────── El valor de Fmax, teniendo por numerador la variancia más grande y por denominador la más pequeña, es 2.5 Fmax = ----- = 3.42 0.7
Prueba del supuesto de homogeneidad de las variancias j/(n-1)
Resultado de la prueba Entrando en la tabla de Fmax, con los parámetros correspondientes y a un nivel de significación de 0.05, el valor teórico de Fmax 0.95(4/4) es 20.60. Dado que el valor observado del estadístico es más pequeño que el de las tablas, se acepta la hipótesis de nulidad o supuesto de homogeneidad de las variancias.
Contrastes de medias Las comparaciones o contrastes se efectúan, por lo general, entre las medias de los grupos de tratamiento. Genéricamente, una comparación entre k medias es la combinación lineal o suma ponderada de medias. Antes de examinar los distintos procedimientos de comparaciones múltiples, proponemos una clasificación práctica para su descripción.
No ortogonales A priori o planificadas Ortogonales Comparaciones múltiples Fisher Duncan Tukey Scheffé Dunnet Newman-Keuls A posteriori o no planificadas
Contrastes a priori o planificados Las comparaciones a priori o planificadas se formulan de acuerdo con los intereses previos o teóricos del investigador, y se plantean antes de obtener los resultados del experimento. Según su naturaleza, las comparaciones planificadas son no ortogonales y ortogonales.
Contrastes no ortogonales Suma algebraica de las medias de los tratamientos ponderadas por unos coeficientes que cumplen la condición de linealidad: Σaj = 0_ _ _ _ c = a1Y.1 + a2Y.2 + ... + ajY.j = ΣajY.j
Cinco hipótesis de nulidad para los contrastes no ortogonales 1. H0 = μ2 - μ1 = 0 Dos lecturas de la lista (condición A2) no difiere de una sola lectura (condición A1). 2. H0 = μ3 - μ1 = 0 Se asume la igualdad entre la condición de tres (A3) y uno (A1). ..//..
3. H0 = μ4 - μ1 = 0 Se asume la igualdad entre cuatro lecturas (condición A4) y una sola lectura (condición A1).
4. H0 = μ3 - 1/2(μ1 + μ2) = 0 Se establece la igualdad entre tres lecturas y el promedio entre una y dos lecturas. 5. H0 = μ4 - 1/3(μ1 + μ2 + μ3) = 0 Se define la igualdad entre cuatro lecturas y el promedio de las restantes.
Reformulación de las hipótesis nulas en combinaciones lineales 1. (-1)μ1 + (1)μ2 + (0)μ3 + (0)μ4 = 0 2. (-1)μ1 + (0)μ2 + (1)μ3 + (0)μ4 = 0 3. (-1)μ1 + (0)μ2 + (0)μ3 + (1)μ4 = 0 4. (-1/2)μ1 + (-1/2)μ2 + (1)μ3 + (1)μ4 = 0 5. (-1/3)μ1 + (-1/3)μ2 + (-1/3)μ3 + (1)μ4 = 0
Coeficientes Contraste a1 a2 a3 a4 c1 -1 1 0 0 2 c2 -1 0 1 0 2 c3 -1 0 0 1 2 c4 -1/2 -1/2 1 0 1.5 c5 -1/3 -1/3 -1/3 1 1.33 Comparaciones múltiples a priori: no ortogonales Σa²j
Prueba de las hipótesis de nulidad Paso 1. Cálculo del valor empírico del contraste. c1 = (-1)2.4 + (1)5.0 + (0)6.6 + (0)8.2 = 2.6 c2 = (-1)2.4 + (0)5.0 + (1)6.6 + (0)8.2 = 4.2 c3 = (-1)2.4 + (0)5.0 + (0)6.6 + (1)8.2 = 5.8 c4 = (-1/2)2.4 + (-1/2)5.0 + (1)6.6 + (0)8.2 = 2.9 c5 = (-1/3)2.4 + (-1/3)5.0 + (-1/3)6.6 + (1)8.2 = 3.53
Paso 2. Cálculo del error estándar del contraste. a²1a²2a²j σcsc = s²e (------ + ------ + ... + ------) nn n CMe = -----------Σa²j n
donde s²e = CMe es la variancia del error o Cuadrado Medio del error del Análisis de la Variancia. Según esta fórmula, se calculan los errores estándar de los distintos contrastes: (1.45)2 sc1 = -------------- = 0.76 5 (1.45)2 sc2 = -------------- = 0.76 5 (1.45)2 sc3 = --------------- = 0.76 5 (1.45)1.5 sc4 = --------------- = 0.66 5 (1.45)1.33 sc5 = ---------------- = 0.62 5
Paso 3. A continuación, se prueba la significación del contraste mediante el estadístico t o F. Cuando se utiliza este segundo estadístico, es necesario calcular las Sumas de Cuadrados de los contrastes, aplicando la siguiente expresión: c² SCc = --------- Σ(a²j/n)
El valor de los respectivos estadísticos de la prueba se obtienen de las ecuaciones siguientes: c t = -------, y sc CMc F = --------- CMe Puesto que cada contraste tiene un solo grado de libertad, el valor del Cuadrado Medio es la correspondiente Suma de Cuadrados.
g.l 1 1 1 1 1
Cuadro resumen del cálculo de las Sumas de cuadrados y de los valores de t y F. Sumas de Cuadrados Valores tF (5)(2.6)² 2.6 16.9 c1 = ------------- = 16.9 -------- = 3.42 -------- = 11.66 2 0.76 1.45 (5)(4.2)² 4.2 44.1 c2 = ------------- = 44.1 ------- = 5.53 -------- = 30.41 2 0.76 1.45 (5)(5.8)² 5.8 84.1 c3 = ------------- = 84.1 ------- = 7.65 -------- = 58 2 0.76 1.45 (5)(2.9)² 2.9 28.03 c4 = ------------- = 28.03 ------- = 4.39 -------- = 19.33 1.5 0.66 1.45 (5)(3.53)² 3.53 46.84 c5 = ------------- = 46.84 -------- = 5.69 -------- = 32.3 1.33 0.62 1.45
Paso 4. Entrando en la tabla de t, con los grados de libertad asociados al término de error del ANOVA y a un nivel de significación del 5%, se tiene t0.95 (16) = 1.76 De igual modo, entrando en la tabla de F, se tienen F0.95(1/16) = 4.49 De esto se concluye que todos los contrastes son significativos.
Contrastes ortogonales La propiedad básica de las comparaciones ortogonales es que reflejan piezas de información independientes y que el resultado de una comparación no tiene relación alguna con el resultado de cualquier otra. Bajo el supuesto de ortogonalidad, dos comparaciones son independientes cuando la suma de los productos cruzados de los coeficientes es cero, es decir, la condición de ortogonalidad entre dos comparaciones cumple la siguiente restricción: (Σajak = 0)
Cinco hipótesis de nulidad para los contrastes ortogonales 1. H0 = μ2 - μ1 = 0 Dos lecturas de la lista (condición A2) no difiere de una sola lectura (condición A1). 3. H0 = 2μ3 – (μ1 + μ2) = 0 Se establece la igualdad entre tres lecturas y el promedio entre una y dos lecturas. 5. H0 = 3μ4 - (μ1 + μ2 + μ3)= 0 Se define la igualdad entre cuatro lecturas y el promedio de las restantes.