1 / 47

Active SLAM : a Framework My, on-going, PhD Research

Active SLAM : a Framework My, on-going, PhD Research. Henry Carrillo Lindado Advised by : José A. Castellanos. Bio – Academic Background. Name: Henry David Carrillo Lindado. Hometown : Barranquilla – Colombia. Academic: PhD in Computer Science and System Engineering (2010 -2014 )

alima
Download Presentation

Active SLAM : a Framework My, on-going, PhD Research

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Active SLAM : a Framework My, on-going, PhD Research Henry Carrillo Lindado Advised by: José A. Castellanos

  2. Bio – Academic Background • Name: Henry David Carrillo Lindado. • Hometown: Barranquilla – Colombia. • Academic: • PhD in Computer Science and System Engineering (2010 -2014) • University of Zaragoza - Spain • M.Sc. in Computer Science and System Engineering • M.Sc. in Electronics Engineering • B.Eng. in Electronics Engineering • Funding: FPI scholarship by the Ministry of Science and Innovation of Spain. 2010-2014. • Contact: • Here: 0.59 Cartesium • hcarri@unizar.es • http://webdiis.unizar.es/~hcarri/pmwiki/pmwiki.php 1

  3. So, What is my PhD about? • Objective:To build an active SLAM framework. • Why?: • Where should I go in order to improve my localization and map representation? • If I go from A to B, will I be lost (e.g. Unable to localize)? • What movements should I make in order to keep my metrical error below X mm? • Aim at: • Metrical representations. • Topological representations. • Metrical+Topologicalrepresentations. 2

  4. Whathave I done? Metrical 3

  5. Preliminaries – SLAM • H0:A model of the operative environment is an essential requirement for an autonomous mobile robot. • Three basic tasks: • Where am I? • What does the world look like? • Where do I go? • SLAM => Joint of two tasks. • SLAM => Does not define the path-trajectory of the robot. • Integrated approach => On the way to autonomy. 4Exploration and Mapping with Mobile Robots. CyrillStachniss. 2006.

  6. Preliminaries – Active SLAM (I) • Active SLAM => To integrate path planning into a SLAM process. • To explorer more area. • Navigate safely. • Reduce uncertainty. • Algorithms • 1º Alg. [Feder, Leonard](99) • Active perception [Bajacksy](86) • Infinite Horizon and MPC [Leung, Dissanayake](06) 5

  7. Preliminaries – Active SLAM (II) • Pseudo-code: • Set of trajectories • Assign a score to each trajectory • Uncertainty of map+robot • Trajectory constraints • Execute the trajectory with the optimum . 6

  8. Preliminaries – Active SLAM (II) • Pseudo-code: • Set of trajectories • Assign a score to each trajectory • Uncertainty of map+robot • Trajectory constraints • Execute the trajectory with the optimum . 6

  9. Preliminaries – Active SLAM (II) • Pseudo-code: • Set of trajectories • Assign a score to each trajectory • Uncertainty of map+robot • Trajectory constraints • Execute the trajectory with the optimum . 6

  10. Preliminaries – Active SLAM (II) • Pseudo-code: • Set of trajectories • Assign a score to each trajectory • Uncertainty of map+robot • Trajectory constraints • Execute the trajectory with the optimum . 6

  11. Uncertainty Criteria for Active SLAM (I) • Uncertainty/Inform. Criteria => • In the TOED, a design (i.e.), isbetterthan a design, if: • The above does not allow to quantify the improvement, therefore is desirable to: • It permits to quantify the uncertainty in . • Theory of Optimal Experiment Design (A-opt, D-opt, E-opt…). • Information Theory ( Entropy, MI…). 7

  12. Uncertainty Criteria for Active SLAM (II) • Some possible uncertainty criteria for active SLAM are: • Previous works ([Simand Roy, 2005], [Mihaylovaand De Schutter, 2003]) report A-opt as the best criterion and that D-opt gives null values. • A-opt, widely used:[Kollar2008] [MartinezCantin2008] [Meger2008] [Dissanayake2006]. • Although D-opt is commonly used in the TOED because it is optimal. Trace (A-opt) Max(E-opt) Determinant (D-opt) 8

  13. Uncertainty Criteria for Active SLAM (III) • It is indeed possible to use D-opt in the Active SLAM context: • The structure of the problem needs to be taken into account (i.e. The covariance matrix varies with time). • It is not informative to compare the determinant of a matrix lx lwith a mx m. • det(l x l) is homogeneous of grade l. • The computation of the determinant of a highly correlated matrix(e.g. SLAM) is prone to round-off errors. • Processing in the logarithm space • D-opt for a l x l covariance matrix: • Stem from [Kiefer, 1974] : 9

  14. Firstexperiment • Firstexperiment: on the computation • Is it possible to compute D-opt from a robot doing SLAM? • Execute a SLAM algorithm (e.g. EKF-SLAM, iSAM). • Compute in each step: A-opt, E-opt , D-opt, Determinant, entropy and mutual Information. • Simulated Robot indoor environment : MRPT/C++ • Real Robot indoor environment : Pioneer 3 DX - Ad-hoc • Real Robot indoor environment : DLR dataset • Real Robot outdoor environment : Victoria Park dataset 10

  15. 1E - Simulated Robot indoor environment (I) Scenario: • Area of 25x25 m • 2D EKF-SLAM • Sensor: Odometry + Camera(360º - 3m range) • 180 landmarks- DA Known. • Gaussian errors: Odometry + Sensors 11

  16. 1E-Simulated Robot indoor environment (II) Qualitative results (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI. 12

  17. 1E-Real Robot indoor environment @ DLR Scenario: • Area60x40 m • Sensor: Odometry + Camera • 2D EKF-SLAM • 576 landmarks – DA known. 13

  18. 1E-Real Robot indoor environment @ DLRQualitative results (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI. 14

  19. Firstexperiment – Quantitative analysis • Average correlation between the uncertainty criteria: • Variance: A-E (0,0002) / A-D (0,0540) / D-E (0,0481). • A-opt y E-opt=> High correlation. • E-opt is guided by a single eigenvalue. • A-opt y D-opt => Medium correlation. • H0: D-opt take into account more components than A-opt. 15

  20. Second Experiment • Second experiment: Active SLAM • What is the effect of the uncertainty criteria in active SLAM? • Active SLAM => Unitary horizon (greedy). • Uncertainty criteria => A-opt, D-opt and Entropy. • Effect =>MSE y . • Simulated Robot with unitary horizon: MRPT / C++ 16

  21. 2E-Simulated Robot indoor environment (I) Scenario: • Area of 20x20m and 30x30m • 2D EKF-SLAM • Sensor: Odometry + Camera (360º - 3m range) • Gaussian errors: Odometry + sensors. • Path planner: Discrete (A*) and continuous (Attract-Repel). 17

  22. 2E-Simulated Robot indoor environment (II) • Resulting paths for each uncertainty criterion: (a) D-opt, (b) A-opt y (c) Entropy. Each colour represents an executed path. 20 x 20 m map. • Qualitativeanalysis 18

  23. 2E-Simulated Robot indoor environment (III) • Resulting trajectories for 10000 stepsactiveSLAMsimulation. (a). Initial trajectory. (b) A-opt. (c). D-opt. • Qualitative analysis. 19

  24. 2E – Quantitative Analysis 30x30 m • Evolution of MSE ((a)-(c)) y chi2 ((d)-(f)) ratio. Average of 10 MC simulations. 20

  25. Take home message • D-opt is the optimum criterion to measure uncertainty according to the TOED (i.e. better than A-opt (Trace)). • It is possible to obtain useful information regarding the uncertainty of a SLAM process with D-opt. • D-opt shows better performance than A-opt in our simulated experiments of active SLAM. • To compute D-opt in the context of a SLAM process => use the formulation presented here. 21

  26. Whathave I done? Metrical: an example using D-opt 22

  27. FaMUS: Fast Minimum Uncertainty Search • Minimum uncertainty path between A to B in a graph. • Exhaustive search. 17

  28. FaMUS: Fast Minimum Uncertainty Search • Minimum uncertainty path between A to B in a graph. • Exhaustive search. 17

  29. FaMUS: Fast Minimum Uncertainty Search • Experiment: Are the minimum uncertainty path and the shortest path necessarily equal? • Select two points A and B, and compare the final uncertainty. • 1000 times x 4 datasets. (Biccoca, Intel , New colleges and Manhattan). 24

  30. FaMUS: Fast Minimum Uncertainty Search • Examples of paths. 25

  31. FaMUS: Fast Minimum Uncertainty Search • Summary of results • Improvement of a least 50% in timing respect to the state of the art. [Valencia2011] 26

  32. Whathave I done? Topological 27

  33. Topological • Guiding question: • Where should I go in order to improve my topological map? • Challenges: well-posed and egocentricimages. • Execute a SLAM algorithm (e.g. EKF-SLAM, iSAM). • Compute in each step: A-opt, E-opt , D-opt, Determinant, entropy and mutual Information. 28

  34. Topological • One solution: • Textons (a.k.a gist)- Undelaying Structure- Probabilistic decision 29

  35. Whathave I done? TBD 30

  36. TBD • Which are the confidence intervals in the active predictions? • When do I stop the active behaviour? • Find a relationship between uncertainty and metrical error. • Use other constraints other than uncertainty. • Speed up the decision process. • Real experiments. 31

  37. Active SLAM : a FrameworkMy, on-going, PhD Research Thanks!!! hcarri@unizar.es http://webdiis.unizar.es/~hcarri 32

  38. Experimentos • Primer experimento : acerca del cálculo • Segundo experimento : SLAM activo • Robot simulado ambiente interior : MRPT / C++ • Robot real ambiente interior : Pioneer 3 DX - Ad-hoc • Robot real ambiente interior : DLR dataset • Robot real ambiente exterior : Victoria Park dataset • Robot simulado con horizonte unitario : MRPT / C++ 7

  39. 1E-Robot en ambiente exterior @ VP (I) Escenario: • Área de 350 x 350 m • iSAM • Sensor: Odometría + Laser • 150 landmarks– DA conocida. 13

  40. 1E-Robot en ambiente exterior @ VP (II) – Resultados cualitativos (a)-(f) A-opt, E-opt, D-opt, determinante, entropía y MI. 14

  41. 1E-Robot en ambiente interior ad-hoc (I) Escenario: • Área 6x4 m • 2D EKF-SLAM • Sensor: Odometría + Kinect • 5 landmarks– DA conocida 15

  42. 1E-Robot en ambiente interior ad-hoc (II) – Resultados cualitativos (a)-(f) A-opt, E-opt, D-opt, determinante, entropía y MI. 16

  43. 2E - Análisis cuantitativo 20x20 m • Evolución del MSE ((a)-(c)) y chi2 ((d)-(f)). Promedio de 10 MC. 18

  44. Determinante Operación algebraica que transforma una matriz en un escalar. • Propiedades (matriz n x n) • Geométrica: Volumen del paralelepípedo definido en el espacio n-dimensional. • Homogéneo de grado n. Si, 15

  45. Artículos • “Experimental Comparison of Optimum Criteria for Active SLAM”. Oral presentation in the “III Workshop de Robótica: Robótica Experimental (ROBOT’11)”. • “On the Comparison of Uncertainty Criteria for Active SLAM”. Submitted to ICRA’12. • “Planning Minimum Uncertainty Paths Over Pose/Feature Graphs Constructed Via SLAM” . Submitted to ICRA’12. 18

  46. OntheComparisonof UncertaintyCriteriafor Active SLAM Thanks!!! hcarri@unizar.es http://webdiis.unizar.es/~hcarri 19

  47. FaMUS: Fast Minimum Uncertainty Search 17

More Related