1 / 26

Qualitative Induction for Behavioral Cloning

Qualitative Induction for Behavioral Cloning. Dorian Šuc and Ivan Bratko AI Lab Faculty of Computer and Information Sc. University of Ljubljana, Slovenia. Kvalitativno u cenje v vedenjskem kloniranju. Dorian Suc in Ivan Bratko. Vedenjsko kloniranje. Dinamicni sistem:

amandla
Download Presentation

Qualitative Induction for Behavioral Cloning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Qualitative Induction for Behavioral Cloning Dorian Šuc and Ivan Bratko AI Lab Faculty of Computer and Information Sc. University of Ljubljana, Slovenia

  2. Kvalitativno ucenje v vedenjskem kloniranju Dorian Suc in Ivan Bratko

  3. Vedenjsko kloniranje Dinamicni sistem: zerjav, letalo, akrobot... Operater Sled vodenja Strojno ucenje Operatorjev dvojnik (”klon”)

  4. Pristopi k kloniranju Sled je zaporedje: (State1,Action1), (State2, Action2), ... “Direktni kontroler”: induciraj preslikavo States Actions, Action = f(State) • “Indirektni kontroler”: Dva problema ucenja • ucenje operaterjeve trajektorije • ucenje dinamike sistema

  5. Uporaba indirektnih kontrolerjev Indirektni kontroler = “posplosena trajektorija” + dinamika sistema 1. Izracunaj Error = diff(CurrentState,GeneralTrajectory) 2. Z uporabo dinamike doloci naslednjo akcijo Action, tako da Action zmanjsa Error

  6. Primerjava direktnih in indirektnih kontrolerjev Eksperimentalne ugotovitve: Indirektni kontrolerji: - so bolj robustni - omogocajo razlago vescine z operaterjevimi podcilji - dajo boljsi vpogled v podzavestno vescino operaterja

  7. Ta clanek • Induciranje indirektnih kontrolerjev • Kvalitativno ucenje trajektorij • QUIN: program za induciranje kvalitativnih dreves iz numericnih podatkov • Uporaba v vodenju zerjava

  8. Primer kvalitativne relacije Vedenje plina Kvantitativni zakon: Pressure * Volume / Temperature = const. Kvalitativni zakon: Pressure = M+,-(Temperature, Volume)

  9. Program QUIN QUalitative INduction Numericni primeri QUIN Kvalitativno drevo Kvalitativno drevo: podobno odlocitvenemu drevesu, vendar kvalitativne omejitve v listih

  10. Primer problema za QUIN Sumni primeri: z = x2 - y2 + noise(st.dev. 50)

  11. Kvalitativni vzorci v podatkih x > 0 & y > 0 => z = M+,-(x,y)

  12. Inducirano kvalitativnodrevo zaz=x2-y2 x > 0 £ 0 y y > 0 > 0 £ £ 0 0 -,+ -,- +,+ +,- z= ( x,y) z= ( x,y) z= ( x y) z= ( x,y) M M M , M Z monotonically increasing with X and monotonically decreasing with Y

  13. Qualitatively Constrained Functions, QCF Ms1, ..., sm: R m --> R, si= + or - Signs si indicate directions of change: If si = + then: function monotonically increases in i-th attribute Function “positively related” to i-th attr. si = -: function “negatively related” to i-th att.

  14. QCF consistency with examples • Each pair of examples (e,f) defines a qualitative change vector q with respect to no-change threshold • A QCF is consistent with (e,f) if QCF permits q

  15. QCF ambiguity • A QCF may be consistent with qualitative change vector q and ambiguous w.r.t. q • QCF is ambiguous w.r.t. q if QCF also permits other qualitative changes in class then those in q

  16. Error-cost of QCF Weighted by proximity of concerned examples • Error-cost of a QCF w.r.t. an example set defined as weighted encoding length • Error-cost of a QCF considers: encoding of QCF + encoding of inconsistent predictions by QCF + encoding of ambiguous predictions by QCF

  17. Algoritem QUIN • Top-down pozresni algoritem, ki inducira kvalitativna drevesa • Za vsako mozno delitev (vozlisce), poisci ”najbolj konsistentno” QCF (min. cena) za vsako podmnozico primerov • Poisci najboljsi atribut (najboljso delitev) glede na MDL

  18. Eksperimentalna evaluacija • Na mnozici umetnih domen • QUIN deluje dobro na sumnih podatkih • QUIN najde kvalitativne relacije, ki ustrezajo intuiciji • QUIN v vedenjskem kloniranju: • QUIN uporabljen za ucenje operaterjeve strategije vodenja • Poskusi v domeni zerjava

  19. Uporaba v vedenjskem kloniranju • Domena: vodenje zerjava • Cilj kloniranja: uspesni in razumljivi kloni

  20. Kontejnerski zerjav Control forces: Fx, FLState: X, dX, , d, L, dL Temelji na prejsnjem delu T. Urbancic(94) Naloga vodenja: prenesi tovor iz zacetnega do ciljnega polozaja

  21. QUIN v modeliranju vescine, domena zerjava • Kvalitativna drevesa inducirana za vodenje vozicka in vodenje vrvi • Sledi dveh operaterjev z zelo razlicnim stilom vodenja

  22. Vodenje vozicka, operater S desired_velocity = f(X, ,d) First the trolley velocity is increasing X < 20.7 yes no From about middle distance from the goal the trolley velocity is decreasing M+(X) X < 60.1 yes no At the goal reduce the swing of the rope (by acceleration of the trolley when the rope angle increases) M-(X) M+()

  23. Vodenje zerjava: primerjva operaterjev Primerjava razlik v stilu vodenja Operater S Operater L X < 20.7 X < 29.3 yes yes no no M+(X) M+,+,-(X, , d) X < 60.1 d < -0.02 yes yes no no M-(X) M+() M-(X) M-,+(X,)

  24. Transformacija kvalitativne v kvantitativno strategijo • S konkretizacijo QCF v realne funkcije Nakljucno generirana funkcija, ki ustreza QCF M+(X) f+(X) • Lahko uporabimo znanje domene: • maksimalne in minimalne vrednosti spremenljivk stanja • vozicek se na zacetku mora zaceti premikati • vozicek se mora ustaviti na cilju

  25. QUIN v modeliranju vescine • Inducirane strategije vodenja: • Razumljive in zelo uspesne • Omogocajo vpogled v razlike med individualnimi stili vodenja • QUIN zmozen detektirati zelo skrite vidike clovekove podzavestne vescine (vidiki, ki pred to aplikacijo programa QUIN niso bili znani)

  26. Related work in qualitative reasoning • In qualitative reasoning: Our QFC’s inspired by qualitative proportionalities (Q+) in QPT (Forbus) and monotonicity relations (M+) in QSIM (Kuipers) • In learning qualitative models of dynamic systems: Mozetic; Coiera; Bratko et al.; Varsek; Richards et al.; Dzeroski, Todorovski; • Distinguishing features of QUIN: models of static systems, qualitative trees, takes numerical examples directly

More Related