1 / 28

Just Google It: Can Internet Search Terms Help Explain Movements in Retail Sales?

Just Google It: Can Internet Search Terms Help Explain Movements in Retail Sales?. Daniel Ayoubkhani (ONS) & Matthew Swannell (ONS). Contents. Introduction to Google Trends Existing Literature Aims of Current ONS Research Data Methods Results Conclusions Considerations.

amora
Download Presentation

Just Google It: Can Internet Search Terms Help Explain Movements in Retail Sales?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Just Google It: Can Internet Search Terms Help Explain Movements in Retail Sales? Daniel Ayoubkhani (ONS) & Matthew Swannell (ONS)

  2. Contents • Introduction to Google Trends • Existing Literature • Aims of Current ONS Research • Data • Methods • Results • Conclusions • Considerations

  3. 1. Introduction to Google Trends • Google provide information on search query share for a given week • Data are available in 25 top level categories and hundreds of lower level categories • Reported as how share of search queries has grown since 1st week of January 2004

  4. 1. Introduction to Google Trends Search Query: Football Transfers Source: Google Insights for Search

  5. 1. Introduction to Google Trends Search Query: Football Transfers Summer Transfer Deadline Reached January Transfer Deadline Reached Summer Transfer Window January Transfer Window

  6. 2. Existing Literature Choi, H and Varian, H (2009) Predicting the Present with Google Trends: • Paper pioneered use of Google Trends (GT) data as a nowcasting tool • Applied log–linear “nowcast” to US retail sales • Performance of models increased when Google Trends data were included

  7. 2. Existing Literature Chamberlin, G (2010) Googling the Present, Economic and Labour Market Review (Dec 2010): • Modelled 11 UK Retail Sales Index (RSI) time series • Relatively simple benchmark models • Alternative models included GT category data as predictors • GT terms significant in eight models

  8. 3. Aims of Current ONS Research Focus of this investigation: quality assurance of the UK RSI • Fit benchmark models that are representative of current ONS practice • Fit alternative models that include appropriate GT terms as predictors • Compare models using empirical measures • Draw conclusions to inform ONS strategy

  9. 4. Data – Retail Sales Index • All Retail Sales • Non-Specialised Food Stores • Non-Specialised Non-Food Stores • Textiles, Clothing and Footwear • Furniture and Lighting • Home Appliances • Hardware, Paints and Glass • Audio and Video Equipment and Recordings • Books, Newspapers and Stationary • Computers and Telecommunications • Non-Store Retailing

  10. 4. Data – Retail Sales Index All extracted RSI time series: • represent monthly GB retail sales • start in January 1988 • end in June 2011 • are not seasonally adjusted • are chained volume indices

  11. 4. Data – Retail Sales Index Source: ONS

  12. 4. Data – Google Trends • All extracted GT time series: • represent weekly UK search activity • start in January 2004 • end in July 2011 • Each RSI series matched with: • at least one GT search category • top five search queries with each category

  13. 4. Data – Google Trends

  14. 4. Data – Google Trends • Raw data are weekly growth rates in query shares • Indices constructed by setting first full week in January 2004 to 100 and applying growth rates • Monthly data formed by taking weighted averages of weekly data

  15. 5. Methods – Benchmark Models • Each RSI “month” is 4- or 5-week long period (SRP) • Disparity between survey and Gregorian months evolves by one or two days each year (“phase shift”) • One-week long survey break every five or six years • Example – September SRP:

  16. 5. Methods – Benchmark Models Therefore SRPs not comparable with each other due to: • their compositions • moving holidays

  17. 5. Methods – Benchmark Models • Regression models used to estimate phase shift effects • Example – Spring bank holiday variable:

  18. 5. Methods – Benchmark Models Differenced (regular and seasonal) Log transformed Follows an ARMA process

  19. 5. Methods – Alternative Models Benchmark models extended with (log transformed, differenced) GT variables • Static relationships estimated for all series • Lagged relationships modelled where identified • Relationships identified at more than one lag modelled both individually and together • Multiple regression models estimated for RSI series matched with more than one GT search category

  20. 5. Methods – Alternative Models Lagged relationships identified from cross-correlation plots of pre-whitened series • ARIMA models fit to all RSI and GT series • used the (0,1,1)(0,1,1) model for all series • Each RSI residual series correlated with each of its corresponding GT residual series • series exhibit common trends and seasonality, so correlate the shocks

  21. 5. Methods – Alternative Models • Example – Furniture and Lighting vs “garden”

  22. 5. Methods – Alternative Models • Example – Furniture and Lighting vs “garden” No significant phase shift effects so models are:

  23. 6. Results

  24. 6. Results – Furniture and Lighting Top three alternative models in terms of AICC

  25. 6. Results – Furniture and Lighting Top three alternative models in terms of MAPE • Out-of-sample, one-step-ahead predictions • 12 periods: July 2010 – June 2011

  26. 7. Conclusions • Promising results for some RSI components... • Furniture and Lighting • Hardware, Paints and Glass • Audio Equipment and Recordings • ...but less so for others • All Retail Sales • Non-Specialised Food Stores • Non-Specialised Non-Food Stores Additional information is only useful when the RSI series is not dominated by trend and seasonality

  27. 8. Considerations • GT variable selection • Transitory nature of search queries • Changes to GT category taxonomy • Future cost and accessibility of GT data? • Wider applicability to ONS outputs?

  28. Questions?

More Related