1 / 34

A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors

A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors. Guy Doziere, Quan Sun, Olav Torheim K. Jaaskelainen IPHC Strasbourg. Motivation. Read out architecture diagram Matrix of pixels (1152 x 576 ) 1152 discriminators : bit rate > Gbits/s

andrew
Download Presentation

A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors Guy Doziere, Quan Sun, Olav Torheim K. Jaaskelainen IPHC Strasbourg

  2. Motivation • Read out architecture diagram • Matrix of pixels (1152 x 576 ) • 1152 discriminators : bit rate > Gbits/s • Zero suppression (data compression) • Buffer • Data bit rate: 160 Mbit/s. • Necessity to reduce the number of wires link •  Quick serial link. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  3. Motivation • Theoretical serial link 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  4. Motivation • Real serial link 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  5. Motivation • Clock data recovery NB: If there are enough edges in the data then the clock can be recovered from the data 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  6. Motivation • Code properties • Provide enough edges in the data to enable Clock Recovery 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  7. Motivation • Receiver threshold Receiver Threshold refers to “Ground” which must be the same potential as “Ground” at the transmitter! 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  8. Motivation • Differential link Use AC Coupling Capacitors…Need DC Balance! NB: Common mode voltage difference between transmitter and termination at the receiver can result in excessive currents 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  9. Motivation • DC balance • Define a maximum Run Length (max consecutive 1 or 0) • Sent equal amount of ‘1’s and ‘0’s (Running Disparity) Modulation or coding ? 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  10. Motivation • Code Properties • Provide enough edges for Clock Recovery • Maximum Run Length and DC Balance 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  11. Coding 8b 10 b • Coding 8b 10b properties • 8 bits to 10 bits conversion, (20 % overload of the data bandwidth) • Input: 256 data characters ≠, • Output : 1024 characters ≠ including 12 specific control characters for the frame synchronization (beginning and end of frame for ex) • Provide enough edges in the data for Clock Recovery, • DC Balance: running disparity positive or negative: ≠ between the number of 0 & 1 for each received byte, positive if nb of 1 > nb of 0, negative if not, possible values 0, +2, -2 • run length : max length of identical successive values of 1 or 0 < 5 NB: coding develop by Wilmer & Franaszek (1983 patent expired from 2003) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  12. Coding 8b 10 b • Input byte Notation Ex: data bite 101 00110 => D6.5 control byte110 10110 => K22.6 • 8 bits  10 bits (coding table cf. annexes) • 256 values • 1024 values : (all are not useful value) • For most of the 256 (8B) values a positive and a negative 10B value is selected depending on the “Current Running Disparity” (rd+ et rd-) • 12 values/1024 “Special” K Characters (used word alignment) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  13. Coding 8b 10 b • Synchronization characters • The Comma characters K28.1/K28.5/K28.7 are used for frame synchronization • Create “ordered sets” • – For example Fibre Channel Start Of Frame • (SOF) = K28.5/D21.5/D23.0/D23.0 • – K30.7 = Error Propagate • – K28.3 = Carrier Extend 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  14. Coding 8b 10 b • Main diagram 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  15. Architecture of prototype • Transmitter diagram • Clock generation: low jitter, power supply noise insensitive, • JTAG configuration : 16 x 9 bits words, • Data encoded read by JTAG., • The chain check is done by serial data analyser, • LVDS output. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  16. Implementation of Building Blocks • Encoder 8B/10B Coding implementing from an open source, currently estimated and studied • Serializer • Load byte frequency: 16 MHz • Bit output rate: 160 MHz • Max. frequency  DFF delay / loading of the input byte. • Ring shifter register. • Clock Generator160 MHz PLLCf. Isabelle Valinpresentation • Buffer LVDS • Frequency : 160 MHz, • Termination Impedance: 100, • Max differential swing: 400 mV, • Common mode voltage : 1,2 V, • A adjustable bias current flows between two single ended outputs, • Typical current consumption: : 5,6 mA. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  17. Implementation of Building Blocks • Layout • AMS CMOS 0,35 μm Technology • Total circuit area : 0,92 mm² integrated • Independent test block integrated into the Mimosa 26 chip 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  18. Results • Serial link LVDS at 160 MHz • Data eye is 60% opening at BER of 10-12(160 MHz) (measurement extrapolation) • Bit rate up to 250 Mbit/s • The encoding data read by JTAG after decoding are the same of the initial values (verilog & vhdl simulation  test ) • The data given by the serial data analyser correspond to the scheduled result. • No intensive test has been achieved. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  19. Conclusion and perspectives • Serial transmission Coding 8b/10b with LVDS output • Block 8b/10b easily integrable in a design, • Layout included in a area of 1450 μm x 330 μm, • Consumption max. at 160 MHz < 10 mA, • PLL working up to 300 MHz with a good noise immunity, • LVDS Max. frequency (standalone) : 400 MHz • New instigation to done for a frequency higher than 400 MHz  • Serial link with Coding 8b/10b for optical fibre link • This block can also be used on a optical fibre link. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  20. Annexes • References • 1. A.X. Widmer and P.A. Franaszek, A DC-BALANCED, PARTITIONED-BLOCK, 8B/10B TRANSMISSION CODE, IBM Journal of Research and Development, Volume 27, Number 5, September 1983 • 1bis. Y. Takasaki, M. Tanaka, N. Maeda, K. Yamashita, and K. Nagano, “Optical Pulse Formats for Fiber Optic Digital Com- munications,” IEEE Trans. Commun. COM-24, 404-413 (1976). • 2. J. M. Griffiths, “Binary Code Suitable for Line Transmission,” Electron. Lett. 5,79-81 (1969). • 3. R. G. Kiwimagi, “Encoding/Decoding for Magnetic Record Storage Apparatus,” IBM Tech. Disclosure Bull. 18, 3147- 3149 (1976). • 4. A. X. Widmer and P. A. Franaszek, “Transmission Code for High-speed Fibre-Optic Data Networks,” Electron. Lett. 19, • 5. P. A. Franaszek, “Sequence-State Coding for Digital Transmis- sion,”BellSyst. Tech. J. 47, 143-157 (1968). • 6. P. A. Franaszek, “Sequence-State Methods for Run-Length- Limited Coding,” IBM J. Res. Develop. 14,376-383 (1970). • 7. A. M. Patel, “Zero-Modulation Encoding in Magnetic Record- ing,” IBM J. Res. Develop. 19,366-378 (1975). • 8. Peter A. Franaszek, “A General Method for Channel Coding,” IBM J. Res. Develop. 24,638-641 (1980). • 9. P. A. Franaszek, “Construction of Bounded Delay Codes for Discrete Noiseless Channels,” IBM J. Res. Develop. 26, 506- 514 (1982). • 10. B. Marcus, “Sofic Systems and Encoding Data on Magnetic Tape,” Preliminary Report, Notices, Amer. Math. SOC. 29, 43 (1982). • 11. R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for Sliding Block Codes,” IEEE Trans. Info. Theory IT-29, 5-22 (1983). • 12. G. Nigel N. Martin, Glen G. Langdon, Jr., and Stephen J. P. Todd, “Arithmetic Codes for Constrained Channels,” IBM J. Res. Develop. 27,94-I06 (1983). • 13. Ta-Mu Chien, “Upper Bound on the Efficiency of DC- Constrained Codes,’’ Bell Syst. Tech. J. 49, 2261-2287 (1970). • 14. J. J. Stiffler, “Theory of Synchronous Communications,” Pren- tice-Hall, Inc., Englewood Cliffs, NJ, 1971, pp. 368-372. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  21. Annexes • Coding block diagram8b/10b (1/6) The FIG. 3 shows the digital schematic of the Classification .5B/6B ": functions L“ 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  22. Annexes • Coding block diagram8b/10b (2/6) (1/ ) The FIG.4 shows the digital schematic of the Classification 3B/4B ": functions S“ 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  23. Annexes • Coding block diagram8b/10b (3/6) The FIG. 5 shows the digital schematic of the running disparity (rd+, rd-) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  24. Annexes • Coding block diagram8b/10b (4/6) The FIG. 6 shows the digital schematic of the complementation control 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  25. Annexes • Coding block diagram8b/10b (5/6) The FIG. 7 shows the digital schematic of 5b/6bterminal. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  26. Annexes • Coding block diagram8b/10b (6/6) The FIG. 8 shows the digital schematic of 3b/4bterminal. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  27. Annexes • Running disparitycoding table (1/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  28. Annexes • Running disparitycoding table (2/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  29. Annexes • Running disparitycoding table (3/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  30. Annexes • Running disparitycoding table (4/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  31. Annexes • 12 “Special” K Characters Comma Characters “The only patterns that have 5 consecutive ‘1’s or ‘0’s 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  32. Annexes • Decoding 6b/5b 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  33. Annexes • Decoding 4b/3b 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

  34. Annexes • Test diagram 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

More Related