350 likes | 848 Views
A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors. Guy Doziere, Quan Sun, Olav Torheim K. Jaaskelainen IPHC Strasbourg. Motivation. Read out architecture diagram Matrix of pixels (1152 x 576 ) 1152 discriminators : bit rate > Gbits/s
E N D
A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors Guy Doziere, Quan Sun, Olav Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Read out architecture diagram • Matrix of pixels (1152 x 576 ) • 1152 discriminators : bit rate > Gbits/s • Zero suppression (data compression) • Buffer • Data bit rate: 160 Mbit/s. • Necessity to reduce the number of wires link • Quick serial link. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Theoretical serial link 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Real serial link 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Clock data recovery NB: If there are enough edges in the data then the clock can be recovered from the data 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Code properties • Provide enough edges in the data to enable Clock Recovery 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Receiver threshold Receiver Threshold refers to “Ground” which must be the same potential as “Ground” at the transmitter! 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Differential link Use AC Coupling Capacitors…Need DC Balance! NB: Common mode voltage difference between transmitter and termination at the receiver can result in excessive currents 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • DC balance • Define a maximum Run Length (max consecutive 1 or 0) • Sent equal amount of ‘1’s and ‘0’s (Running Disparity) Modulation or coding ? 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Motivation • Code Properties • Provide enough edges for Clock Recovery • Maximum Run Length and DC Balance 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Coding 8b 10 b • Coding 8b 10b properties • 8 bits to 10 bits conversion, (20 % overload of the data bandwidth) • Input: 256 data characters ≠, • Output : 1024 characters ≠ including 12 specific control characters for the frame synchronization (beginning and end of frame for ex) • Provide enough edges in the data for Clock Recovery, • DC Balance: running disparity positive or negative: ≠ between the number of 0 & 1 for each received byte, positive if nb of 1 > nb of 0, negative if not, possible values 0, +2, -2 • run length : max length of identical successive values of 1 or 0 < 5 NB: coding develop by Wilmer & Franaszek (1983 patent expired from 2003) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Coding 8b 10 b • Input byte Notation Ex: data bite 101 00110 => D6.5 control byte110 10110 => K22.6 • 8 bits 10 bits (coding table cf. annexes) • 256 values • 1024 values : (all are not useful value) • For most of the 256 (8B) values a positive and a negative 10B value is selected depending on the “Current Running Disparity” (rd+ et rd-) • 12 values/1024 “Special” K Characters (used word alignment) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Coding 8b 10 b • Synchronization characters • The Comma characters K28.1/K28.5/K28.7 are used for frame synchronization • Create “ordered sets” • – For example Fibre Channel Start Of Frame • (SOF) = K28.5/D21.5/D23.0/D23.0 • – K30.7 = Error Propagate • – K28.3 = Carrier Extend 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Coding 8b 10 b • Main diagram 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Architecture of prototype • Transmitter diagram • Clock generation: low jitter, power supply noise insensitive, • JTAG configuration : 16 x 9 bits words, • Data encoded read by JTAG., • The chain check is done by serial data analyser, • LVDS output. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Implementation of Building Blocks • Encoder 8B/10B Coding implementing from an open source, currently estimated and studied • Serializer • Load byte frequency: 16 MHz • Bit output rate: 160 MHz • Max. frequency DFF delay / loading of the input byte. • Ring shifter register. • Clock Generator160 MHz PLLCf. Isabelle Valinpresentation • Buffer LVDS • Frequency : 160 MHz, • Termination Impedance: 100, • Max differential swing: 400 mV, • Common mode voltage : 1,2 V, • A adjustable bias current flows between two single ended outputs, • Typical current consumption: : 5,6 mA. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Implementation of Building Blocks • Layout • AMS CMOS 0,35 μm Technology • Total circuit area : 0,92 mm² integrated • Independent test block integrated into the Mimosa 26 chip 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Results • Serial link LVDS at 160 MHz • Data eye is 60% opening at BER of 10-12(160 MHz) (measurement extrapolation) • Bit rate up to 250 Mbit/s • The encoding data read by JTAG after decoding are the same of the initial values (verilog & vhdl simulation test ) • The data given by the serial data analyser correspond to the scheduled result. • No intensive test has been achieved. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Conclusion and perspectives • Serial transmission Coding 8b/10b with LVDS output • Block 8b/10b easily integrable in a design, • Layout included in a area of 1450 μm x 330 μm, • Consumption max. at 160 MHz < 10 mA, • PLL working up to 300 MHz with a good noise immunity, • LVDS Max. frequency (standalone) : 400 MHz • New instigation to done for a frequency higher than 400 MHz • Serial link with Coding 8b/10b for optical fibre link • This block can also be used on a optical fibre link. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • References • 1. A.X. Widmer and P.A. Franaszek, A DC-BALANCED, PARTITIONED-BLOCK, 8B/10B TRANSMISSION CODE, IBM Journal of Research and Development, Volume 27, Number 5, September 1983 • 1bis. Y. Takasaki, M. Tanaka, N. Maeda, K. Yamashita, and K. Nagano, “Optical Pulse Formats for Fiber Optic Digital Com- munications,” IEEE Trans. Commun. COM-24, 404-413 (1976). • 2. J. M. Griffiths, “Binary Code Suitable for Line Transmission,” Electron. Lett. 5,79-81 (1969). • 3. R. G. Kiwimagi, “Encoding/Decoding for Magnetic Record Storage Apparatus,” IBM Tech. Disclosure Bull. 18, 3147- 3149 (1976). • 4. A. X. Widmer and P. A. Franaszek, “Transmission Code for High-speed Fibre-Optic Data Networks,” Electron. Lett. 19, • 5. P. A. Franaszek, “Sequence-State Coding for Digital Transmis- sion,”BellSyst. Tech. J. 47, 143-157 (1968). • 6. P. A. Franaszek, “Sequence-State Methods for Run-Length- Limited Coding,” IBM J. Res. Develop. 14,376-383 (1970). • 7. A. M. Patel, “Zero-Modulation Encoding in Magnetic Record- ing,” IBM J. Res. Develop. 19,366-378 (1975). • 8. Peter A. Franaszek, “A General Method for Channel Coding,” IBM J. Res. Develop. 24,638-641 (1980). • 9. P. A. Franaszek, “Construction of Bounded Delay Codes for Discrete Noiseless Channels,” IBM J. Res. Develop. 26, 506- 514 (1982). • 10. B. Marcus, “Sofic Systems and Encoding Data on Magnetic Tape,” Preliminary Report, Notices, Amer. Math. SOC. 29, 43 (1982). • 11. R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for Sliding Block Codes,” IEEE Trans. Info. Theory IT-29, 5-22 (1983). • 12. G. Nigel N. Martin, Glen G. Langdon, Jr., and Stephen J. P. Todd, “Arithmetic Codes for Constrained Channels,” IBM J. Res. Develop. 27,94-I06 (1983). • 13. Ta-Mu Chien, “Upper Bound on the Efficiency of DC- Constrained Codes,’’ Bell Syst. Tech. J. 49, 2261-2287 (1970). • 14. J. J. Stiffler, “Theory of Synchronous Communications,” Pren- tice-Hall, Inc., Englewood Cliffs, NJ, 1971, pp. 368-372. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Coding block diagram8b/10b (1/6) The FIG. 3 shows the digital schematic of the Classification .5B/6B ": functions L“ 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Coding block diagram8b/10b (2/6) (1/ ) The FIG.4 shows the digital schematic of the Classification 3B/4B ": functions S“ 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Coding block diagram8b/10b (3/6) The FIG. 5 shows the digital schematic of the running disparity (rd+, rd-) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Coding block diagram8b/10b (4/6) The FIG. 6 shows the digital schematic of the complementation control 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Coding block diagram8b/10b (5/6) The FIG. 7 shows the digital schematic of 5b/6bterminal. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Coding block diagram8b/10b (6/6) The FIG. 8 shows the digital schematic of 3b/4bterminal. 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Running disparitycoding table (1/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Running disparitycoding table (2/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Running disparitycoding table (3/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Running disparitycoding table (4/4) 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • 12 “Special” K Characters Comma Characters “The only patterns that have 5 consecutive ‘1’s or ‘0’s 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Decoding 6b/5b 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Decoding 4b/3b 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg
Annexes • Test diagram 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg