610 likes | 795 Views
Multiscale Simulation of Polymers near (Metal) Surfaces. K. Kremer Max Planck Institute for Polymer Research, Mainz. 09/2005. Max-Planck Institute for Polymer Research Mainz. Molecular. Atomistic. Characteristic Time and Length Scales. Soft fluid. Time. Finite elements. bilayer
E N D
Multiscale Simulation of Polymersnear (Metal) Surfaces K. Kremer Max Planck Institute for Polymer Research, Mainz 09/2005
Molecular Atomistic Characteristic Time and Length Scales Soft fluid Time Finite elements bilayer buckles Length Quantum Local Chemical Properties Scaling Behavior of Nanostructures Energy Dominance Entropy Dominance of Properties
Open Source Software: ESPResSo Modular Simulation Package by C. Holm et al Method development will continue!! Extensible Simulation Package for Research on Soft matter
Central Topics of the Theory Group • Method Development, Scientific Open Source Software (ESPResSo) • Charged Systems (SFB, Transregio, Gels) • Long Range Interactions, Hydrodynamics • Membranes,….Biophysics • Multiscale Modeling • Analytic Theory of disordered Systems • Complex Fluids • Computational Chemistry of Solvent-Solute Systems • Melts, Networks – Relaxation, NEMD …
COWORKERS: L. Delle Site N. Van der Vegt D. Andrienko, M. Praprotnik, X. Zhou (Los Alamaos Nat. Lab.) N. Ardikari, W. Schravendijk, M.E. Lee F. Müller-Plathe ( TU Darmstadt) O. Hahn (Würzburger Druckmaschinen) D. Mooney (Univ. College Dublin) H. Schmitz (Bayer AG) W. Tschöp (DG Bank) S. Leon (UPM Madrid) C. F. Abrams (Drexel) H. J. Limbach (Nestle) BMBF Center for Materials Simulation Bayer, BASF, DSM, Rhodia, Freudenberg
Why Polycarbonate? Modern application of Polycarbonate New football stadium, Cologne, World Championship 2006
Why study Polycarbonate and the PC/Ni interface? Grooves and address pits of a die cast sample of polycarbonate for a high storage density optical disc Bayer Materials
Why study Polycarbonate and the PC/Ni interface? d=λ/4 (100nm) “only” high tech commodity polymer
Specific Adsorption Two extreme cases end adsorption only “inert” surface energy dominated entropy dominated
Structure Property Relations for Polymers - Linking Scales • Interplay universal - system specific aspects
Soft Matter?? Thermal energy of particles/ per degree of freedom E=kT • Room temperature 300K: Chemical Bond Hydrogen Bond Soft Matter: Thermal Energy dominates properties
Energy Scale kT for T=300K Electronic structure, CPMD Quantum Chemistry Biophysics Membranes, AFM Spectroscopy
Semi macroscopic L 100Å - 1000Å T 0 (1 sec) Mesoscopic L 10Å - 50Å T 10-8 - 10-4 sec Entropy dominates Macroscopic domains etc. Microscopic L 1Å - 3Å T 10-13 sec Energy dominates (Sub)atomic electronic structure chemical reactions excited states Mesoscopic L 10Å - 50Å T 10-8 - 10-4 sec Entropy dominates Time and length scales Properties generic/universal *** chemistry specific
Mixtures Polymer A, B #AA, #BB, #ABcontacts =O(N) Phase separation, critical interaction “chemistry” “generic” Intra-chain entropy invariant => small energy differences => phase separation
Example Viscosity h of a polymer melt (extrusion processes ....) Microscopic materials/ chemistry specific Prefactor L 1Å– 3Å (e.g. function of glass transition) T 10-13 sech = A MX “Energy dominated“ « Mesoscopic generic/universal Properties L 10Å– 50Å h = A MX X = 3.4 T 10-8 – 10-4sec M molecular weight “Entropy dominated“ h= A MX varies for many decades varies for many decades • e.g.: M 2M h(2M) 10h(M) • T =500 K 470K • (T =470 K ) 10 h(T = 500 K) (typical values for BPA-PC)
Micro-Meso-Macro Simulation Interplay Energy Entropy Free Energy Scale: kBT (SEMI-)MACROSCOPIC “Coarse Graining“ Inverse Mapping MESOSCOPIC Simpler Models “Coarse Graining“ Inverse Mapping TODAY ATOMISTIC/MOLECULAR
Polycarbonate on Metal Surface • Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC) • Molecular Coarse-Graining • Inverse Mapping, (Phenol Diffusion) • BPA-PC Melts near Nickel Surfaces • Ab initio calculations: Surface/molecule energetics • Multiscale simulation: Molecular orientation at liquid/metal interface • Adsorption at a step • Shearing a melt
Molecular Coarse-Graining of Bisphenol-A-Polycarbonate • Coarse-graining:map bead-spring chain over molecular structure. => Many fewer degrees of freedom • Inverse mapping: grow atomic structure on top of coarse-grained backbone =>Large length-scale equilibrationin an atomically resolved polymer
Original Ansatz 1:2 Mapping O C C O C C O O O O } Distribution Functions v v a j = a j P( l , , ) P( l )P( )P( ) v v v b j = b j P( l , , ) P( l )P( )P( ) ³ 4 10 Thermodynamic PotentialV Algorithmic speed up: ! Distributions include temperature! MD simulation at one temperature, but with variable distributions.
Interaction Energies in the Coarse-Grained Model Angle potentials are T-dependent Boltzmann inversions; e.g., at carbonate: U P • Excluded volume • Bonds • Angles • Torsions T = 570 K
Molecular Coarse-Graining of Bisphenol-A-Polycarbonate Melts 9.3-11.5 Å A particular conformation of a 10-repeat-unit molecule of BPA-PC at atomic resolution; 356 atoms Its coarsened representation in the 4:1 mapping scheme; 43 “beads”; ‹Rg2›1/2 = 20.5 Å; lp ~ 2 r.u. Fast motion (e.g. bond vibration) is properly averaged over; CG chain represents a multitude of underlying atomic structures C. F. Abrams, KK, Macromol. 36, 260(2003)
Results for Melts, N=20….120 • Molecular Coarse-Grained Melt • Inverse Mapping End to end distance of coarse grained simulations agree to n-scattering experiments!
Viscosity => Time Mapping • Melt simulation • Viscosity fromchain diffusioncoefficient • Property of entire chains • (new data 2005) • [W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polym. 49, 61 (1998); ibid. 49, 75].
How good are generated conformation?Inverse Mapping: Reintroduce Chemical Details Coarse grained BPA-PC chain All atom model
Comparison: Simulation n-Scattering Structure factors of (deuterated) BPA-PC Right: standard BPA-PC Bottom: fully deuterated BPA-PC • [J. Eilhard, A. Zirkel, W. Tschöp, O. Hahn, K. K., O. Schärpf, D. Richter,U. Buchenau,J. Chem. Phys. 110, 1819 (1999)]
Polycarbonate on Metal Surface • Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC) • Molecular Coarse-Graining • Phenol Diffusion (need atomistic resolution!) • Inverse Mapping, (atomistic trajectories for entangled melts for up to 10-4sec!!) • BPA-PC Melts near Nickel Surfaces • Ab initio calculations: Surface/molecule energetics • Multiscale simulation: Molecular orientation at liquid/metal interface • Adsorption on a step • Shearing a melt
Simulating BPA-PC/Metal Interfaces Molecular structure coarse-grained onto bead-spring chain Simulation of coarse-grainedBPA-PC liquids (T = 570K)next to metal surface Specific surface interactionsinvestigated via ab initiocalculations
Ab initio Investigations of Comonomeric Analogues on Nickel (CPMD Program: M. Parrinello)
CPMD: Propane and Carbonic Acid on Nickel Adsorption energy: +0.01 eV (0.2 kT @ 570K) for d 3.2Å Strongly repulsed, regardless of orientation propane carbonic acid
CPMD: Benzene and Phenol on Nickel • Benzene: Eads = -1.05 eV (21 kT @ 570K) at d = 2 Å. • Phenol: Eads = -0.92 eV at d = 2 Å. • Both: Horizontal orientation strongly preferred, short-ranged: |Eads| < 0.03 eV for d > 3 Å
CPMD: Dependence of Phenol-Ni Interaction on Ring Orientation Interaction verysensitive to orientation!
CPMD:Conclusions • Strong repulsion of propane and carbonic acid • + the strong orientational dependence • + short interaction range of phenol • with Ni {111} • • Internal phenylene comonomers in BPA-PC are sterically hindered from adsorbing on Ni {111}. • Torsional freedom in carbonate group allows for terminal phenoxy groups to adsorb
Coarse-Grained BPA-PC with End-Group Resolution (Dual Scale MD) • Phenol-Ni interactionstrongly dependent onC1-C4 phenol orientation • In standard 4:1 model,phenoxy end orientationnot strictly accounted for • Resolving only the terminal carbonatesspecifies 1-4 orientationand is inexpensive Abrams CF, Delle Site L, KK, PRE 67, 021807 (2003)
Results: Chain-end adsorption Chain center-of-mass density profiles • N = 10 monomers • M = 240 chains • Rg21/2 = 20.5 Å3 clear regimes: • z < Rgbulk : • both ends adsorbed • Rgbulk < z < 2Rgbulk : • single ends adsorbed • z > 2Rgbulk: • no ends adsorbed
Schematic structure of “End-Sticky” Melts Chains “compressed” Chains “elongated” Normal Bulk conformations Coupling Surface Bulk?
Extension I: Other Chain EndsEnergy - Entropy Competition Delle Site, Leon, KK, JACS, 126, 2944(2004)
Line Defect Induced Ordering L. DelleSite, S. Leon, KK, J. Phys. Cond. Matt.17, L53, 2005
Extension III: Shearing a Melt end adsorption energy dominated case: phenolic chain ends Surface Potential for Ends
Sheared melts Both ends at surface One end at surface No end at surface EPL 70, 264-270 APR 2005
Extension IV: Jamming Lubricants BPA-PC plus 5% additives
Extension IV: Jamming Lubricants BPA-PC plus 5% additives
Jamming Lubricants BPA-PC plus 5% (weight) additives under shear: BPA-PC + 5-mers BPA-PC + DPC Blue: major component Yellow: minor component
Jamming Lubricants BPA-PC plus 5% additives under shear: JCP 123 Art. No. 104904 SEP 8 2005
Specific Surface Morphologies – Multiscale Approach PC near Ni Competition Energy- Entropy Coarse-graining onto bead-spring chain Simulation of coarse-grainedpolymer next to metal surface (BPA-PC) “sticky” chain ends “neutral” Coating/contamination with oligomers Specific surface interactions ab initio calculations (CPMD) C.F. Abrams, et al. PRE 021807 (2003) L. DelleSite, et al. PRL 156103 (2002) BMBF Zentrum MatSim
A few Challenges • Dual-Triple… Scale Simulations/Theory • Adaptive quantumforce fieldcoarse grained … • Nonbonded Interactions: NEMD, Morphology… • Accuracy kBTO(1/N)needed! • Conformations Electronic Properties • E.g. coupling of aromatic groups to backbone conformation, or to other chains • Online Experiments: • Nanoscale Experiments, long Times
Adaptive Methods:Changing degrees of freedom on the fly Adaptive Multiscale methods – Static and Dynamic Simple test case Polymers at surfaces, VW Foundation Project M. Praprotnik, L. DelleSite, KK, JCP, Nov. 2005
Adaptive Methods:Changing degrees of freedom on the fly Tetrahedron, repulsive LJ Particles, Hybrids “Softer” Sphere FENE bonds Explicit Atom Transition Coarse Grained regime regime regime