1 / 26

Program:

Sygnały bioelektryczne. Program: Biofizyka kom ó rki – błona kom ó rkowa, transport przez błony. Potencjał spoczynkowy i potencjał czynno ś ciowy w kom ó rce nerwowej. Przewodzenie impulsów nerwowych. Układ nerwowy – układ autonomiczny i somatyczny.

ataret
Download Presentation

Program:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sygnały bioelektryczne Program: Biofizyka komórki – błona komórkowa, transport przez błony. Potencjał spoczynkowy i potencjał czynnościowy w komórce nerwowej. Przewodzenie impulsów nerwowych. Układ nerwowy – układ autonomiczny i somatyczny. Biofizyka układu krążenia. Tętno, układ tętniczy i żylny. Elektryczna czynność serca, elektrokardiografia. Potencjały czynnościowe serca. Teoria elektrokardiografii i wektokardiografii. Tkanka mięśniowa – budowa komórki mięśniowej. Mechanizm skurczu mięśnia. Potencjał czynnościowy komórek mięśniowych. Złącze nerwowo mięśniowe. Elektromiografia. Biofizyczne podstawy generacji EEG I. Teoria Nuneza. Synchronizacja generatorów EEG. Analiza gęstości źródłowej prądu. Biofizyczne podstawy generacji EEG II. Zasada kąta bryłowego. Warstwa dipolowa. Pomiar MEG.Lokalizacja czynności mózgu. Rytmy EEG snu. Wrzeciona, kompleksy K, fale delta i wolna oscylacja. Struktura i funkcja snu. Wyładowania epileptyczne. Rytmy EEG podczas pobudzenia i uwagi – rytmy beta/gamma, rola rytmu gamma w percepcji. Rytm theta, alfa, mu i tau. Potencjały wywołane, synchronizacja wywołana zdarzeniem.Diagnostyka za pomocą EEG.

  2. Sygnały bioelektryczne Proponowane podręczniki: G. Shepherd, Neurobiology E. Kandel, Principles of Neural Science D. Johnston i S. Wu, Foudations of Cellular Neurophysiology P. Nunez, Electric fields of the brain A. Longstaff, Neurobiologia. Krótkie wykłady, PWN G.G. Matthews, Neurobiologia. Od cząsteczek i komórek do układów, PZWL A. Pilawski,Podstawy Biofizyki, PZWL 1985

  3. Sygnały bioelektryczne Kryteria oceniania: Egzamin pisemny i ustny (najlepiej po zakończeniu wykładu tj. przed sesją)

  4. Komórka nerwowa - neuron

  5. Średnica włosa 0,02 mm do 0,08 mm. Komórka nerwowa - neuron Średnica aksonu (0,004 mm) do 100 mikronów (.1 mm) Neurony jednobiegunowe Neuron dwubiegunowy Neurony wielobiegunowe Długość aksonu (1 mm) do ponad 1m U ludzi: Ok. 1011neuronów w mózgu Średnia długość aksonu w korze ok. 0.02 m. Całkowita długość aksonów A = 2*109m Odległość Ziemia – Księżyc L = 4*108m A/L = 5

  6. Komórki glejowe – Oligodendrocyty, Komórki Schwanna, Astrocyty Astrocyty- podtrzymywanie fizyczne neuronów, buforowanie jonów potasu, regulacja neuroprzekaźnictwa (wchłanianie neuroprzekaźnika, otaczanie synaps), dostarczają składników odżywczych (glukoza) w stanie podwyższonej aktywności, usuwanie produktów przemiany wewnątrzkomórkowej. Oligodendrocyty i komórki Schwanna – wytwarzająosłonkę mielinową (w chorobie zwanej stwardnieniem rozsianym dochodzi do uszkodzenia otoczki mielinowej w centralnym i obwodowym układzie nerwowym). Mikroglej – składniki układu odpornościowego, aktywne podczas stanów zapalnych i w uszkodzeniach, pochłaniają produkty rozpadu neuronów.

  7. Potencjał błonowy Potencjał błonowy – różnica potencjałów w poprzek błony komórkowej Potencjał błonowy bierze się z rozdzielenia dodatnich i ujemnych ładunków przez błonę komórkową. Gdy neuron jest w spoczynku, na zewnątrz błony występuje przewaga ładunków dodatnich, a wewnątrz – ujemnych. Potencjał błonowy jest podstawową własnością wszystkichżywych komórek

  8. Siły chemiczne i elektryczne R – stała gazowa T - temperatura q – ładunek F – stała Faradaya V – różnica potencjałów z – elektrowartościowość

  9. Potencjał Nernsta Stan równowagi termodynamicznej: Walter Hermann Nernst (ur. 25 czerwca 1864 w Wąbrzeźnie, zm. 18 listopada 1941w Zibelle), laureat Nagrody Nobla z chemii w 1920r. Równanie Nernsta V - Potencjał Nernsta, potencjał równowagi, potencjał dyfuzji

  10. Potencjał Nernsta dla jonów K, Na, Cl

  11. Potencjał błonowy - równanie Goldmana P – przepuszczalność (permeability) Równanie Goldmana Równanie Goldmana-Hodgkina-Katza (GHK) Uwagi: - Cl- ma ładunek ujemny i dlatego stosunek stężeń jest odwrócony. - Ponieważ [K+]out = [Cl-]in oraz [K+]in = [Cl-]out i PCl << PK, to pominięcie Cl- znacząco nie zmieni wyniku. Dla PNa = 0.04*PK, zaniedbując Cl-: Vm = -60 mV

  12. Obwód zastępczy Wygodną reprezentacją potencjału spoczynkowego jest obwód zastępczy. Dla każdego rodzaju jonów, potencjałowi równowagi odpowiada źródłowi napięcia. Jest ono połączone szeregowo z opornością, czyli odwrotnością przewodnictwa. ‘Kanały’ dla różnych jonów są oddzielne i niezależne. Dodatkowo, błona komórkowa może gromadzić ładunki po obu stronach i ma własności pojemnościowe. przewodnictwo Oprócz pasywnego procesu dyfuzji jonów zgodnie z gradientem stężeń, istnieje transport aktywny przywracający różnicę stężeń pomiędzy wnętrzem i zewnętrzem komórki. Mechanizm ten jest nazywany pompą sodowo-potasową i wymaga dostarczania energii.

  13. Potencjał czynnościowy Potencjał czynnościowy polega na krótkotrwałej depolaryzacji błony komórkowej. Wczesne doświadczenia (K.C. Cole i H. J. Curtis, 1939) pokazały, że błona komórkowa staje się spolaryzowana dodatnio (ok. +50 mV) podczas maksimum potencjału czynnościowego.Gdyby powodował go jedynie chwilowy wzrost przepuszczalności dla wszystkich jonów, błona osiągnęła by 0 mV, lecz nie więcej. Obiektem do badań potencjału czynnościowego był akson Kalmara Atlantyckiego Kalmar Atlantycki Loligo pealei

  14. Potencjał czynnościowy – impuls sodowy Zależność potencjału czynnościowego od stężenia sodu. A i B: Maksimum potencjału czynnościowego maleje wraz maleniem stężenia Na w płynie zewnątrzkomórkowym. Silna zależność wartości maksimum od stężenia Na wskazuje na duża przepuszczalność błony dla tych jonów w trakcie impulsu. Alan Hodgkin i Bernard Katz odkryli, że amplituda potencjału czynnościowego zależy od koncentracji Na+ na zewnątrz komórki. Postawili hipotezę, że chwilowa zmiana przepuszczalności i wpływ jonów Na+ do wnętrza komórki zgodnie z gradientem stężeń, powoduje potencjał czynnościowy. Potwierdzeniem tej hipotezy była obserwacja, że maksimum potencjału czynnościowego wynosi +55mV, co jest bliskie wartości potencjału równowagi dla sodu. Ich eksperymenty wskazały również, że zanik potencjału czynnościowego może być związany ze wzrostem przepuszczalności dla jonów K+ i ich wypływem z komórki.

  15. Model Hodgkina i Huxleya - bramki Zaproponowano, że istnieja kanały zależne od napięcia. Np. kanał Na posiada bramkę aktywacyjną i bramkę inaktywacyjną. Obie muszą być otwarte by kanał mógł przewodzić jony. Bramka aktywacyjna jest zamknięta gdy błona znajduje się poniżej potencjału spoczynkowego i otwiera się szybko przy depolaryzacji. Bramka inaktywacyjna jest otwarta przy potencjale spoczynkowym i wolno zamyka się w wyniku depolaryzacji. Kanał K posiada tylko bramkę aktywacyjną otwierającą się wolno w wyniku depolaryzacji. Zachowanie pojedynczych kanałów może być rejestrowane za pomocą patch clamp. W zapisach widać szybkie otwieranie i zamykanie pojedynczych kanałów. Ich suma daje gładki przebieg wartości prądu

  16. Eksperyment Hodgkina i Huxleya - video

  17. Potencjał czynnościowy – wszystko albo nic! wzrost gNa depolaryza-cja błony napływ Na+ ‘Wybuchowa’ natura impulsu jest związana z kanałami sodowymi o przepuszczalności zależnej od napięcia i sprzężeniem zwrotnym dodatnim z depolaryzacją błony.

  18. Okresy refrakcji Po wystąpieniu potencjału czynnościowego występuje okres refrakcji. W fazie refrakcji absolutnej komórka nie może wygenerować kolejnego impulsu bez względu na pobudzenie. W fazie refrakcji względnej, komórka może wygenerować impuls ale wymaga to silniejszego pobudzenia niż w stanie spoczynku.

  19. Generacja potencjału czynnościowego - podsumowanie

  20. Potencjał czynnościowy - propagacja Prąd wpływający do komórki musi z niej wypłynąć by zamknąć obwód prądowy. Jony płyną wzdłuż komórki szukając miejsc najmniejszego oporu błony. Prądy te (tzw. prądy lokalne) rozprzestrzeniają depolaryzację do sąsiednich rejonów aksonu gdzie, jeśli próg jest osiągnięty, generowany jest następny potencjał. • We włóknach niezmielinizowancyh propagacja następuje w sposób ciągły. • B. We włóknach z mieliną propagacja następuje skokowo – od jednego przewężenia do następnego. • W dendrytach występują odcinki błony aktywnej (tzw. hot spots), w których może być generowany impuls. Jest to odmiana propagacji skokowej.

  21. Prądy w komórkach nerwowych • Klasyczna teoria Hodgkina i Huxleya opisująca procesy w błonie komórkowej axonu związanych z kanałami Na+ i K+ jest użyteczna lecz nie w pełni adekwatna do opisu innych części komórki np. dendrytów, ciała komórki, zakończenia aksonu. • W innych częściach komórek nerwowych istnieją cała gama kanałów jonowych dla różnego typu jonów. • Ilościowy model HH można modyfikować i stosować do opisu wielu innych napięciowo-zależnych kanałów jonowych.

  22. Synapsa Sir Charles Sherrington, 1897, Podręcznik fizjologii <gr. sýnapsis połączenie>

  23. Synapsy chemiczne i elektryczne Dwa główne sposoby komunikacji w układzie nerwowym: synapsy elektryczne i synapsy chemiczne. Cytoplasmic continuity between pre- and postsynaptic cells Ultrastructural components Synaptic delay Type of synapse Distance between pre- and postsynaptic cell membranes Agent of transmission Direction of transmission Yes Gap-junction channels Virtually absent Electrical 3.5 nm Ion current Usually bidirectional No Presynaptic vesicles and active zones; postsynaptic receptors Significant: at least 0.3 ms, usually 1-5 ms or longer Chemical 20-40 nm Chemical transmitter Unidirectional

  24. Synapsy elektryczne A. W synapsie elektrycznej dwie komórki są połączone kanałami szczelinowymi (gap-junction channels). Kanały te umożliwiają bezpośredni przepływ jonów pomiędzy dwoma komórkami. Dodatkową ułatwieniem komunikacji jest zawężenie przestrzeni zewnątrzkomórkowej z 20nm do 3.5 nm w złączu szczelinowym (gap junction). Mikrografia elektronowa połączenia szczelinowego. Macierz kanałów wyizolowana z błony wątroby szczura. Każdy kanał ma strukturę hexagonalną. Powiększenie: X 307 800 B. Każdy półkanał (connexon) składa się z sześciu identycznych podzespołów (connexin). C. Podzespoły są ułożone tak, że tworzą por pośrodku kanału. Por jest otwarty gdy podzespoły są skręcone względem podstawy. Na otwarcie lub zamknięcie poru może wpływać poziom pH i stężenie Ca+ w komórce. Synapsy elektryczne mogą mieć również napięciowozależne bramki oraz reagować na różne neuroprzekaźniki. • Główne cechy przekaźnictwa elektrycznego: • duża prędkość • wierność przekazu (bez zniekształcenia) • działanie dwukierunkowe • Zastosowanie: • szybkie działanie (np. odruch ucieczki) • synchroniczne działanie dużych grup neuronów • komunikacja w komórkach glejowych

  25. Synapsa chemiczna • W skrócie: • Potencjał czynnościowy dochodzi do zakończenia aksonu. • Uwolnienie neuroprzekaźnika do szczeliny synaptycznej. • Powstanie potencjału postsynaptycznego w neuronie postsynaptycznym.

  26. Synapsy pobudzające i hamujące W wyniku akcji synaptycznej powstaje potencjał postsynaptyczny (PSP) w neuronie postsynaptycznym. Potencjał ten jest pobudzający (excitatory or EPSP) jeśli zwiększa prawdopodobieństwo generacji potencjału czynnościowego oraz jest hamujący inhibitory or IPSPs) jeśli zmniejsza prawdopodobieństwo generacji potencjału czynnościowego. Większość neuronów dostaje wejścia zarówno pobudzające, jak i hamujące. Prąd synaptyczny jest postaci: Isyn = gsyn(t)(V - Vsyn) (A) Pobudzający potencjał postsynaptyczny EPSP. (B) Hamujący potencjał postsynaptyczny IPSP. (C) IPSP może jednak depolaryzować komórkę jeżeli potencjał równowagowy dla danej synapsy jest pomiędzy potencjałem spoczynkowym i progiem potencjału czynnościowego.

More Related