220 likes | 348 Views
Gráfica de Contro l Para Data Continua. Profesor Walter López. Introducción. Un gráfico de control es un diagrama especialmente preparado donde se van anotando los valores sucesivos de la característica de calidad que se está controlando.
E N D
Gráfica de ControlPara Data Continua Profesor Walter López
Introducción • Un gráfico de control es un diagrama especialmente preparado donde se van anotando los valores sucesivos de la característica de calidad que se está controlando. • Los datos se registran durante el funcionamiento del proceso de fabricación y a medida que se obtienen.
Objetivo General • Objetivo General • Todo grafico de control esta diseñado para presentar los siguientes principios: • Fácil de entendimiento de los datos • Claridad • Consistencia • Medir variaciones de calidad
Objetivo Específico • Proceso de prevención para evitar que el producto llegue sin defectos al cliente. • Detectar y corregir variaciones de calidad
Definición de los términos • El gráfico de control tiene: • Línea Central que representa el promedio histórico de la característica que se está controlando • Límites Superior e Inferior que calculado con datos históricos presentan los rangos máximos y mínimos de variabilidad.
Definición de Términos • Subgrupos • Grupo de mediciones con algún criterio similar obtenidas de un proceso • Se realizan agrupando los datos de manera que haya máxima variabilidad entre subgrupo y mínima variabilidad dentro de cada subgrupo • Media • Sumatoria de todos los subgrupos divididos entre el numero de muestras • Rango • Valor máximo menos el valor mínimo
Utilidad • Los gráficos x-R se utilizan cuando la característica de calidad que se desea controlar es una variable continua.
Paso #1:Recolección de Datos • Estos datos deberán ser: • Recientes de un proceso al cual se quiere controlar • Estos pueden ser tomados • Diferentes horas del día • Diferentes días • Todos tienen que ser de un mismo producto.
Paso #2: Promedio • Sumatoria de los datos de cada uno de los subgrupos dividido entre el numero de datos (n). • Formula X • ∑X1 + X2 + X3 + Xn n • La formula debe ser utilizada para cada uno de los subgrupos
Paso #3: Rango • Valor mayor del subgrupo menor el valor menor. • Formula • R = x valor mayor – x valor menor • Determine el rango para cada uno de los subgrupos
Paso #4: Promedio Global • Sumatoria de todos los valores medios y se divide entre el número de subgrupos (k). • Formula X’ • ∑X1 + X2 + X3 +…+ Xn k
Paso #5: Valor Medio del Rango • Sumatoria del rango (R) de cada uno de los subgrupos divido entre el numero de subgrupos (k). • Formula R’ • ∑R1 + R2 + R3 + …. + Rn k
Ejemplo de Tabla de Datos Rango Promedio Promedio del Rango Promedio de la Varible
Paso #6: Limites de Control • Para calcular los limites de control se utilizan los datos de la siguiente tabla
Limites de control • Gráfica X’ • Línea central (LC) = X’ • Limite control superior (LCS ) = X’ + A2R’ • Limite control inferior (LCI ) = X’ - A2R’ • Gráfica de R’ • Línea central (LC ) = R’ • Limite control superior (LCS) = D4R’ • Limite control inferior (LCI) = D3R’
Gráfica X’ • Utilizando los datos de X’ de la tabla se contruye la gráfica
Gráfica R’ • Utilizando los valores del rango (R) de la tabla de datos se construye la gráfica de R’
Puntos fuera de ControlIdentificación de causas especiales o asignables Pautas de comportamiento que representan cambios en el proceso: • Un punto exterior a los límites de control. • Se estudiará la causa de una desviación del comportamiento tan fuerte. • Dos puntos consecutivos muy próximos al límite de control. • La situación es anómala, estudiar las causas de variación. • Cinco puntos consecutivos por encima o por debajo de la línea central. • Investigar las causas de variación pues la media de los cinco puntos indica una desviación del nivel de funcionamiento del proceso. • Fuerte tendencia ascendente o descendente marcada por cinco puntosconsecutivos. • Investigar las causas de estos cambios progresivos. • Cambios bruscos de puntos próximos a un límite de control hacia el otrolímite. • Examinar esta conducta errática.
Proceso bajo control • Si no hay puntos fuera de los límites de control y no se encuentran patrones no aleatorios, se adoptan los límites calculados para controlar la producción futura • Una vez determinado que el proceso esta bajo control estadístico entonces se puede evaluar la capacidad del proceso.
Conclusión • Los gráficos de control son herramientas estadísticas • Muy simples de construir • Simples de utilizar • Muy útiles para controlar tendencias y la estabilidad de un proceso analítico.
Referencias • E.L. Grant, R.S. Leavenworth, Statistical Quality Control, McGraw-Hill, Inc., New York (1988) • D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi, J.Smeyers-Verbeke, Handbook of Qualimetrics and Chemometrics. Part A. Elsevier, Ámsterdam (1997) • http://www.quimica.urv.es/quimio • Escalona Moreno, Iván. Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias sociales y Administrativas (UPIICSA) del Instituto Politécnico Nacional (I.P.N.), México (2002). • Armando Moreno, Diego. Campus Piedras Negras Calidad Piedras Negras Coahuila, México (2005). Colaboración: Ivonne M. Ferrer Lassala