1 / 69

Flavor Compounds Formation by Maillard Reaction

Flavor Compounds Formation by Maillard Reaction. Biogenetic Flavours (Primary) Prepared Flavours (Secondary) (uncooked Food)

barbra
Download Presentation

Flavor Compounds Formation by Maillard Reaction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Flavor Compounds Formation by Maillard Reaction

  2. Biogenetic Flavours (Primary)Prepared Flavours (Secondary)(uncooked Food) e. g. Milk BoilingBakingBroilingRoastingFermentation Vegetable e.g. Potatoes Bread Meat Meat Yoghurt Fruits Vegetables Pastry Fish Coffee Cheese Spices Cereals Confectionery Potatoes Peanuts Pickled cabbage Enzymatic Flavour Flavour Development Through MicrobiologicalDevelopment Heat-Treatment (e. g. Maillard-Reaction) Flavour Development Natural Flavour Formation

  3. Flavor -Generation by Maillard –reaction: Heatingup of Amino-acidsin the presence of Glucose (Rohan, 1999)

  4. Chemistry of Flavor Precursors Flavor derived from carbohydrate and proteins R C H2 N O S C H 3 Furan Pyrrole Thiophene CH3 N C H 3 N N Pyridine Pyrazine

  5. Flavor Compounds Formation by Maillard Reaction Reducing Sugars and -amino acids N-glycosylamine or N-fructosylamine 1-Amino-1-deoxy-2-ketose (Amadori intermediate) or 2-Amino-2-deoxy-1-aldose (Heynes intermediate) Reductones and Dehydroreductones H2S NH3 + Amino Acids Strecker degradation + Retroaldol Reaction Glyoxal Pyruvaldehyde Glycerolaldehyde Strecker Aldehydes + CO2+ -aminoketone (Methional, NH3, H2S) Furans Thiophenes Pyrroles Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acetylaldehyde Heterocyclizaion Pyrazines Pyridines Oxazoles Thiazoles Pyrroles

  6. Maillard Reaction-- Amadori Rearrangement - H2O Imine Compound - H2O Amadori Rearrangement

  7. Maillard Reaction--Heynes Rearrangement COH C H O H CH2OH 2 H _ O H H2O C H2NR + C C O NHR NHR CHOH CHOH CHOH R R R 2-amino-2-deoxy-1-aldose Heynes Rearrangement

  8. Flavor Compounds Formation by Maillard Reaction Reducing Sugars and -amino acids N-glycosylamine or N-fructosylamine 1-Amino-1-deoxy-2-ketose (Amadori intermediate) or 2-Amino-2-deoxy-1-aldose (Heynes intermediate) Reductones and Dehydroreductones H2S NH3 + Amino Acids Strecker degradation + Retroaldol Reaction Glyoxal Pyruvaldehyde Glycerolaldehyde Strecker Aldehydes + CO2+ -aminoketone (Methional, NH3, H2S) Furans Thiophenes Pyrroles Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acetylaldehyde Heterocyclizaion Pyrazines Pyridines Oxazoles Thiazoles Pyrroles

  9. Amadori Intermediate Transformation for Reductones and Dehydroreductones Formation N H R N H R H H C H C 2 - H N R 2 K E C O Ketoenolization C O H C H O H C O H C H O H C H O H R R 1-amino-1-deoxy-2-ketose 2,3-enediol (Amadori rearrangement) H C H 3 C H 2 C O C O K E C O H Ketoenolization C O C O H C H O H R R REDUCTONE DEHYDROREDUCTONE

  10. 1,4-Dideoxyhexasone from Amadori Product CH3 CH3 CH3 C O C O C O _ H2O Ketone formation C O C O C O H C H CH C H O H C O H C O C H O H CH2OH CH2OH CH2OH Dehydroreductone from Amadori CH3 CH3 C O C O C O Enolization C O CH2 CH2 HC OH C OH H C O C H O H 1,4-dideoxyhexone

  11. Flavor Compounds Formation by Maillard Reaction Reducing Sugars and -amino acids N-glycosylamine or N-fructosylamine 1-Amino-1-deoxy-2-ketose (Amadori intermediate) or 2-Amino-2-deoxy-1-aldose (Heynes intermediate) Reductones and Dehydroreductones H2S NH3 + Amino Acids Strecker degradation + Retroaldol Reaction Glyoxal Pyruvaldehyde Glycerolaldehyde Strecker Aldehydes + CO2+ -aminoketone (Methional, NH3, H2S) Furans Thiophenes Pyrroles Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acetylaldehyde Heterocyclizaion Pyrazines Pyridines Oxazoles Thiazoles Pyrroles

  12. Aldol Condensation and Retro-Aldol Reaction b-hydroxy aldehyde is rather unstable and is easily dehydrated to compounds in which the double bond is conjugated with the carbonyl group

  13. Retro-Aldo Reaction H C O CH2OH C O + H2O H C O C O H C H 2 C O CH2OH Pyruvic aldehyde C H Dihydroxy acetone 2 + C H O H Alcohol Aldehyde C H O C H O C H O H _ H2O C H O H C O CH2OH CH3 CH2OH 3-deoxyhexosone Pyruvic aldehyde Glycer-aldehyde

  14. Retro-Aldol Reaction of Deoxyhexosones C H 3 O C C H 3 O C C O C H 3 Aldol Condensation C O diacetyl Retro-Aldol Reaction C H 2 + C H O H C H O COH C H O 1,4-dideoxyhexosone Glyoxal

  15. Flavor Compounds Formation by Maillard Reaction Reducing Sugars and -amino acids N-glycosylamine or N-fructosylamine 1-Amino-1-deoxy-2-ketose (Amadori intermediate) or 2-Amino-2-deoxy-1-aldose (Heynes intermediate) Reductones and Dehydroreductones H2S NH3 + Amino Acids Strecker degradation + Retroaldol Reaction Glyoxal Pyruvaldehyde Glycerolaldehyde Strecker Aldehydes + CO2+ -aminoketone (Methional, NH3, H2S) Furans Thiophenes Pyrroles Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acetylaldehyde Heterocyclizaion Pyrazines Pyridines Oxazoles Thiazoles Pyrroles

  16. CHO C=O CH CH CHOH CH2OH CHO C=O CH CH CH2OH Hydroxymethylfural and Furfural _ HOH H O H C H O CHO H2COH H2COH O O Dehydroreductone from hexose 5-hydroxymethylfurfural _ H2O O H H CHO CHO O O Furfural Dehydroreductone from pentose

  17. C H C H 3 3 2 C O C O Ketonization 3 C H O H C O H 4 C O C O H 5 C H O H C H O H 2 2 Reductone from pentose 5-Methyl-4-Hydroxy-3(2H)-Furanone 3 O O H H O H Cyclorization 2 C H O 3 O H O H 3 O O H -2H2O - H O H HOH2C C O O H -CO2 2 O O H C H O 3 5-methyl-4-hydroxy-3-(2H)-furanone (nor-furaneol) 5-ketogluconic acid

  18. Formyl Pyrrol Formation H H H C C O C O O C O C O C O C H C H C + R’NH2 H - C C H H OH C H - H2O O H H H C C ‘ N H R ' C ' H N H R -H2O R R R -H2O R CHO N R '

  19. 2,5-Dimethyl-4-Hydroxy-3-Furanone (Isomaltol) 1 C H C H 3 3 2 C O C O O H O O H O 3 4 - H O 3 O H C H O H C 2 O H 4 C O C O H C H C H 2 3 3 5 C H C H 3 O O 3 5 C H O H C H O H 6 C H C H Isomaltol 3 3 Reductone (Rhamnose)

  20. Maple Lactone Formation C H 3 O C H C 2 C O H O O C H Ketobutyric acid C H 3 O 3 C H C - H H O H O O C H O O C C C O + H C H O H O O 3 C H 3 O H O O C C O C H 3 O H C H O C H 3 3 -CO2 C H O C H O 3 3 O O Maple Lactone

  21. Flavor Compounds Formation by Maillard Reaction Reducing Sugars and -amino acids N-glycosylamine or N-fructosylamine 1-Amino-1-deoxy-2-ketose (Amadori intermediate) or 2-Amino-2-deoxy-1-aldose (Heynes intermediate) Reductones and Dehydroreductones H2S NH3 + Amino Acids Strecker degradation + Retroaldol Reaction Glyoxal Pyruvaldehyde Glycerolaldehyde Strecker Aldehydes + CO2+ -aminoketone (Methional, NH3, H2S) Furans Thiophenes Pyrroles Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acetylaldehyde Heterocyclizaion Pyrazines Pyridines Oxazoles Thiazoles Pyrroles

  22. Strecker Degradation Mechanism R 2 R 2 C O H N C H C O O H H N C H C O O H H O C 2 + C O R R C O 1 1 R 3 R 3 Amino acid Dicarbonyl . R H 2 R 2 C H C C O - N H O 2 - 2 C H C O O H C + N R C O 1 R C O 1 R 3 R 3 Schiff Base (imine) R R 2 2 H N H H C N C H C + H O 2 R 1 C H O + 2 C O R C O Strecker Aldehyde 1 R R 3 3 a-Aminocarbonyl

  23. Dicarbonyl Compounds for Strecker Degradation O O O O CH3 C C CH3 CH3 C C CH2CH3 Diacetyl 2,3-pentanedione CH3 O O O O OH CH-CH2OH O HO O OH HO Dehydroascorbic acid L-deoxyhexosone (from Amadori)

  24. Compounds from Methionine by Strecker Reaction H3C-S-CH2-CH2-CHO H3C S CH2 CH2 CH COOH Strecker Aldehyde NH2 + CH2=CH-CHO H3C-SH H3C-S-S-CH3 H3C-S-CH3 + H3C-S-S-S-CH3 H3C-S-S-S-S-CH3

  25. Methionine Breakdown by Strecker Reaction S C O O H N H2 H N H O 2 O O - - CO2 + + R C C R ' R C C R ' + Enaminol S C H O - H2O C H S H + H O H C C H C H O 3 2 2 Methylmercaptan

  26. H2S Formation from Cysteine by Strecker Reaction N H 2 H S C O O H O O R C C R ' H N H O 2 CO2 H S + C H C H O + O C C N H C H O HS C H R C C R ' + + 2 3 2 R R ' Mercapto Acetaldehyde Enaminol

  27. Flavor Compounds Formation by Maillard Reaction Reducing Sugars and -amino acids N-glycosylamine or N-fructosylamine 1-Amino-1-deoxy-2-ketose (Amadori intermediate) or 2-Amino-2-deoxy-1-aldose (Heynes intermediate) Reductones and Dehydroreductones H2S NH3 + Amino Acids Strecker degradation + Retroaldol Reaction Glyoxal Pyruvaldehyde Glycerolaldehyde Strecker Aldehydes + CO2+ -aminoketone (Methional, NH3, H2S) Furans Thiophenes Pyrroles Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acetylaldehyde Heterocyclizaion Pyrazines Pyridines Oxazoles Thiazoles Pyrroles

  28. Retroaldol Reaction Products from Maillard Reaction O O O HO CH2 HC C CH3 CH Hydroxyacetone Glyoxal O O O HO CH2 CH CH3-C CH Pyruvaldehyde Hydroxyacetylaldehyde OH OH O O CH3CH HO-CH2 C CH3 CH-CH Acetoin Glyceroaldehyde O O O CH3 CH3-C C-CH3 CH Acetylaldehyde Diacetyl

  29. Pyrazines Formation Cocoa, coffee, French fry, Roasted beef H N CH2OH CH2OH H2N O C C - H2O + C H2C H O NH2 N N N CH2 CH3 H N N - OH

  30. Pyrazines Formation O H O HO NH2 C NH3 C CH + C C CH2 H O H O H2N a,b-Dicarbonyl H N N HO OH -3H2O N HO H N H

  31. Oxazole Formation Trimethyl-oxazoline in beef stew N 2,4,5-trimethyl oxazole O Possible mechanism for the formation of trimethyloxazole from diacetyl, CH . CHO, and NH 3 3

  32. Mechanism for the Formation of Trimethyl-oxazoline + H O O H O H 2 · H C C C C H H C C C C H 3 3 3 3 O O O N H H - · + H C C H O 3 2 + N H - H C C 3 H - H O 2 · · H C C C C H 3 3 H C 3 N O · N C H · H C O 3 3 H C C 3

  33. + O H O H C C C H H3C 3 · H C C C C H C C C H H3C 3 3 3 O O S H S O N H - · + H C C H O 3 2 + N H O - H C C 3 H C H H3C - H O 2 · · H C C C C H 3 3 H3C · N S N C H H3C · S 3 H C C 3 (Baked potato, beef, coffee, tea, cocoa bean) Thiazole Formation (Weak nutty, sulfur)

More Related