1 / 10

Kwadraty magiczne

Kwadraty magiczne. Autorzy: Magda Jóźwik Adrianna Prokop.

belita
Download Presentation

Kwadraty magiczne

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kwadraty magiczne Autorzy: Magda Jóźwik Adrianna Prokop

  2. Kwadraty magiczne znane były Chińczykom i Hindusom przed paru tysiącami lat. Spotyka się amulety chińskie z kwadratami magicznymi, na których jeszcze nie ma cyfr, lecz są odpowiednie ilości nakłuć lub wydrążeń. Znane one były również Arabom w IX wieku naszej ery. Do Europy zaś wprowadził je, a przynajmniej pierwsze zasady ich zestawień wskazał Europejczykom, pewien Grek imieniem Moscopulos, który żył w Konstantynopolu w początkach XV stulecia. Kwadraty magiczne są to kwadraty rozbite na pewną ilość mniejszych kwadracików, czyli pól, w których liczby wypisuje się w ten sposób, że suma liczb w każdym poziomym rzędzie, w każdej pionowej kolumnie i na obu przekątnych jest taka sama. Przedstawiony kwadrat znany był w Chinach już około 2200 roku p.n.e. Suma liczb w kolumnach, wierszach i na obu przekątnych wynosi w tym kwadracie magicznym 15.

  3. Najbardziej historycznym kwadratem magicznym w Europie nazwać można bez wątpienia ten, który widnieje na jednym z arcydzieł pędzla Albrechta Dürera zatytułowanym „Melancholia”. Jest to kwadrat złożony z 16 pól, a zestawiony tak pomysłowo, że dwie środkowe liczby dolnego rzędu dają rok powstania dzieła - 1514. Kwadrat nad skrzydłem anioła

  4. Kwadraty magiczne mają bardzo ciekawe właściwości: • Jeżeli wszystkie liczby, jakie zawiera kwadrat magiczny powiększymy lub zmniejszymy o jedną i tę samą liczbę to kwadrat pozostanie magiczny. dodajemy po 17i otrzymujemy kwadrat: Np. Do każdej liczby w kwadracie: W pierwszym kwadracie suma magiczna, czyli suma liczb poszczególnych rzędów, kolumn oraz przekątnych, wynosi 15; w drugim kwadracie dodajemy do każdej liczby po 17 i suma magiczna wynosi:

  5. Jeżeli pomnożymy lub podzielimy wszystkie jego składniki przez jakąś liczbę to kwadrat pozostanie również magiczny. mnożymy przez 2 i otrzymujemy kwadrat: Np. każdą liczbę w kwadracie

  6. Z dwóch kwadratów możemy otrzymać trzeci kwadrat magiczny przez sumowanie liczb stojących w analogicznych polach: + = Suma magiczna takiego kwadratu równa się sumie sum magicznych obu składników, czyli 15 + 66 = 81.

  7. Kwadrat pozostaje kwadratem magicznym jeżeli poprzestawiamy jego kolumny oraz szeregi leżące symetrycznie względem środka kwadratu. Na przykład: W pierwszym z tych kwadratów przestawiliśmy kolumny pierwszą i czwartą; powstał kwadrat drugi, w którym zachowała się suma wyrazów w każdym wierszu i w każdej kolumnie, ale nie zachowała się suma na przekątnych. Jeśli teraz w drugim kwadracie przestawimy wiersze pierwszy i czwarty, to otrzymamy kwadrat trzeci, już doskonale magiczny.

  8. Suma magiczna każdego kwadratu zestawionego z ciągu arytmetycznego, czyli ciągu kolejnych liczb różniących się między sobą o tę samą liczbę równa się połowie sumy pierwszego i ostatniego wyrazu pomnożonej przez liczbę podziałek boku kwadratu. Przykładem takiego kwadratu jest: Składa się on z odpowiednio ustawionych liczb od 1 do 9 (zatem ustawione rosnąco różnią się między sobą o 1). Wykorzystując wymienioną własność możemy obliczyć sumę:

  9. Istnieją kwadraty, w których możemy mówić o iloczynie magicznym. Kwadrat taki jest zbudowany z liczb naturalnych, tak, że każda z tych liczb jest większa od poprzedniej tyle samo razy, jeśli zostaną one ustawione rosnąco. Przykładem takiego kwadratu jest poniższy: Iloczyn liczb zapisanych w każdej z kolumn, każdym z wierszy oraz na każdej przekątnej wynosi 4096.

  10. Dziękujemy

More Related